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Abstract High-speed archival and indexing solutions of
streaming traffic are growing in importance for applications
such as monitoring, forensic analysis, and auditing. Many
large institutions require fast solutions to support expedient
analysis of historical network data, particularly in case of
security breaches. However, “turning back the clock” is not
a trivial task. The first major challenge is that such a technol-
ogy needs to support data archiving under extremely high-
speed insertion rates. Moreover, the archives created have
to be stored in a compressed format that is still amenable
to indexing and search. The above requirements make gen-
eral-purpose databases unsuitable for this task and dedicated
solutions are required. This work describes a solution for
high-speed archival storage, indexing, and data querying on
network flow information. We make the two following impor-
tant contributions: (a) we propose a novel compressed bitmap
index approach that significantly reduces both CPU load and
disk consumption and, (b) we introduce an online stream
reordering mechanism that further reduces space require-
ments and improves the time for data retrieval. The reordering
methodology is based on the principles of locality-sensitive
hashing (LSH) and also of interest for other bitmap crea-
tion techniques. Because of the synergy of these two compo-
nents, our solution can sustain data insertion rates that reach
500,000–1 million records per second. To put these numbers
into perspective, typical commercial network flow solutions
can currently process 20,000–60,000 flows per second. In
addition, our system offers interactive query response times
that enable administrators to perform complex analysis tasks
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on the fly. Our technique is directly amenable to parallel
execution, allowing its application in domains that are chal-
lenged by large volumes of historical measurement data, such
as network auditing, traffic behavior analysis, and large-scale
data visualization in service provider networks.
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1 Introduction

Corporate and service provider networks, financial insti-
tutions, and high-security data centers are increasingly
interested in tools that allow them to archive network traffic
information for postmortem analysis. Imagine for example,
the case of an identified data breach at a financial institu-
tion: the system administrator would like to quickly pinpoint
the accessed nodes from the list of suspected IP addresses to
isolate additional compromised nodes. A similar scenario is
also encountered during the outbreak of a computer worm,
when one would like to identify the computer nodes that have
been contacted by the compromised system.

To support the above functionality, all inbound and
outbound traffic can be recorded in order to recreate the orig-
inal breach or attack conditions. Archival solutions typically
do not record the actual packet content of network traffic,
something that would result in repositories of prohibitive size
and severely compromise user privacy. The recorded infor-
mation focuses on network flow data. In that way, one can
still capture extended information on the graph connectivity,
such as source and destination IP addresses, ports, protocols,
and time.

However, even when only storing network flows, huge
repositories can be accumulated over time. Currently, a typ-
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Fig. 1 Exponential growth in the number of mobile devices suggests
that the number of network flows will increase at a similar rate in the near
future. Compare, for example, the growth of desktop internet, which was
not nearly as rapid (data source: Morgan Stanley)

ical service provider network may exhibit flow export rates
as high as 50,000 flows per second; such rates amount to
more than 8 GB of raw flow information per hour. This means
that, even when using data compression, the resulting data
repository could easily reach the order of Terabytes on a
yearly basis. The task of capturing flow data at high speeds
is expected to be aggravated in the near future. Recent survey
data suggest an exponential increase in the number of mobile
devices that generate network traffic (Fig. 1), which directly
implies an equivalent growth in the captured network flows.
Even sifting through such enormous databases is not trivial,
particularly when one is interested in identifying “needles in
the haystack”.

To effectively address the above issues, two mechanisms
need to be in place: (i) a high-performance data storage mech-
anism that will capture and archive all streaming network
information of interest, and (ii) a search mechanism over
the archival data, potentially with the help of an indexing
scheme.

This work introduces NET-FLi (NETwork FLow Index),
a highly optimized solution for real-time indexing and
data retrieval in large-scale network flow repositories. By
exploiting the nature of network flow data, we introduce
adaptive indexing and data compression mechanisms that
exploit the synergy of bitmap indexing and locality-sensitive
hashing (LSH) methodologies. Our approach offers real-time
record processing, with high compression rates and interac-
tive query response times. Both data compression and index-
ing are performed on the fly. The low response time for data
retrieval from the repository is attributed to our effective
indexing and selective data block decompression strategies.

Our solution can be utilized in the following applications:

1. Network forensics, for auditing and compliance pur-
poses. Compressed network flow archives capture digi-
tal evidence that can be used for retrospective analysis
in cases of information abuse and cyber-security attacks.
Such an analysis would require deep recursive explo-

ration of the inbound/outbound traffic through access
of the stored archive. Traditional approaches typically
require expensive searches and data decompressions in
large data repositories. Using our framework, answers
can be retrieved in mere seconds.

2. Network troubleshooting, as an indispensable tool for
system administrators and data analysts to better support
network management. Consider the case of an operator
requiring a visualization of the dependencies between
a set of servers; this is a necessary step for preparing a
server migration plan and requires the laborious retrieval
of historical traffic usage and access patterns in one’s
domain. Drill-down capabilities for querying the archive
system are also needed. Our approach can provide a
viable solution for fast search over the archived data,
thus assisting in the expedient resolution of tasks such
as: identification of network anomalies, network perfor-
mance issues, and bottlenecks. Resolving such issues can
lead to better load balancing of the network.

3. Behavior analysis, with focus on traffic classification.
It is of general interest to identify the application that
generated a particular network communication. Nowa-
days, this is a challenging problem, because a significant
portion of network traffic is transported through widely
used ports, such as port 80 (e.g., Skype or torrent file
transfers) [30]. Recent work suggests that network flow
information, such as the cardinality of flows, packets,
and bytes exchanged, can be exploited for characterizing
applications [44].

4. Streaming data indexing. Even though the solution pre-
sented here has been created to primarily support archiv-
ing of network data, the indexing and compression strat-
egies that we present can also be used for archiving and
searching over any streaming numerical data, when high
throughput and low latency are essential.

Our work makes several important contributions:

– We present a novel solution for on-the-fly archiving and
indexing of network flow data based on the synergy of an
alphabet-optimized bitmap index variant, along with an
online LSH-based reordering scheme to further boost the
space savings of our approach.

– The compressed columnar approach that we propose
achieves compression ratios on par with that of a typical
GZIP compression, with the added benefit of providing
indexing functionality as well as partial and selective
archival block decompression.

– Typical data insertion rates of our approach can reach
1.2 million flow records/s on a commodity desktop PC.
High-bandwidth networks currently experience bursts of
up to 50,000 flow records/s traffic, so our approach offers
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an order of magnitude higher processing rates than those
required to capture all flows of typical networks.

– The combination of compressed bitmap indexes and
compressed data columns enables the selective decom-
pression of the desired data and therefore guarantees
interactive retrieval times while searching through giga-
bytes of compressed flow repositories.

– The architecture actively exploits the parallelism offered
by multi-core and multi-processor systems.

In the remainder of the paper, we go into more detail on
the distinct advantages of our solution. We begin by survey-
ing related work and elementary concepts in Sects. 2 and 3.
Section 4 presents the archival and bitmap indexing approach
of our solution, while Sect. 5 discusses the online stream reor-
dering methodology. We evaluate our approach in Sect. 6 with
respect to other extant approaches. Finally, Sect. 7 provides
a case study and introduces the visualization layer of our
prototype solution.

2 Related work

Network forensics involves topics that need to be addressed
efficiently from both a network and a database perspec-
tive. Below, we review some relevant solutions, and when
possible, highlight the differences to our approach:

1. Network traffic recording systems [15,37] are
deployed by financial and security agencies interested in
keeping a sliding window of the traffic, which can be
replayed entirely for postmortem analysis. Filters for sup-
porting on-the-fly queries can be enabled, but interactive
queries over the archived data are not supported.

2. Data stream management systems (DSMS), such as
Gigascope [12], TelegraphCQ [10], Borealis [2], Tribeca
[47], and System S [4,51], have been introduced to per-
form online queries over data streams. The idea behind
the stream database approaches is to support static que-
ries over online data without storing the entire stream on
disk. Only the query results (such as data aggregations)
are kept on secondary storage. Those systems usually pro-
vide SQL-like languages augmented with stream-aware
operators. Plagemann et al. provide examples of stream
databases deployed in the context of traffic analysis [41].

3. Flow-based systems for network traffic attempt to lift
some of the limitations of stream-based systems by archiv-
ing entire network streams. Silk [22], nfdump [25], and
Flow-tools [43] are commonly used tools for storing
flows. They all store flow records as flat files, with optional
data compression using tools such as gzip, bzip2, and lzop
[38]. Important shortcomings of those software suites are
that (i) they do not provide any indexing facility and
(ii) the entire data set must be scanned linearly (and

decompressed) even for retrieving only a few records. In
contrast, our flow storage solution has been designed to
selectively decompress only the data blocks containing
the required answer set.
Reiss et al. [42] propose a flow storage solution imple-
mented on top of FastBit [17]. FastBit is a library for
developing column-oriented databases that provides built-
in support for compressed indexes for accelerating queries
over historical data. Contrary to NET-FLi, their flow stor-
age solution does not provide any compression mecha-
nism for the data, which is appended uncompressed (and
unsorted) to the disk. In addition, indexes are built off-
line and in batch. NET-FLi can handle twice the incom-
ing flow rate with compression rates equivalent to that of
gzip, leading to 40% smaller indexes.
Distributed architectures for storing flow records such as
MIND [33] and DIPStorage [35] assign flow records to
different peers for decreasing query response times and
for achieving high insertion rates. Our work is comple-
mentary, as our flow storage solution can be used as a
back-end system for building distributed storage archi-
tectures.

4. Flow aggregation databases such as AURORA [28] and
nTop [36] use stream-based approaches to analyze high-
speed networks and provide statistics (e.g., IP addresses
with highest usage) at different timescales (i.e., hourly,
daily, weekly, or yearly). However, unlike stream dat-
abases that are programmable with SQL-like languages,
network aggregation databases provide a predefined set
of analysis tasks, trading flexibility for performance.
In addition, they do not offer efficient drill-down capa-
bilities, which are essential for our application.

In our solution, we adopt a columnar data representation
[3,26,27]. Related to our work are therefore column-ori-
ented database systems, such as CStore [46], MonetDB [9],
or BigTable [11]. Organizing the data in columns rather than
in rows offers several advantages: (i) it provides more oppor-
tunities for compression; (ii) it allows operators to be imple-
mented directly over the compressed data; and (iii) it reduces
the I/O bandwidth for queries with high selectivity on the
attributes.

This work represents an expanded version of [20], pro-
viding additionally (a) an in-depth comparison with PLWAH
[14], a recently introduced bitmap indexing encoding; (b) the
two-sided COMPAX variant; (c) an extended evaluation of
the stream reordering component; and (d) the application
layer of our methodology.

Connection with compression techniques: Compression is
increasingly becoming a companion technology for colum-
nar databases [1], and high-speed compression algorithms
optimized for modern hardware, such as superscalar CPUs
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Fig. 2 Indicative attributes
present in a flow record

[5,52] or graphics processing units (GPUs) [16], have been
proposed in the literature. In this work, we use the fastest
LZ-based compressor [38] for compressing flows, but we
propose an extensible architecture where alternative com-
pression algorithms can be plugged in.

Closely related to our work is NetStore [24], a columnar
database optimized for flow records. NetStore provides
built-in compression and supports multiple compression
algorithms. Contrary to our work, NetStore chooses the com-
pression algorithm to be used for each column segment
(block in our terminology) at runtime and provides indexes
solely for the set of IP addresses defined as local in a network.
When deployed over a significantly less powerful machine
(4 cores instead of 8, 2 Gb of RAM instead of 6 Gb), our
storage repository provides two orders of magnitude higher
insertion rates even when indexing IP addresses, transport
ports, protocol, the timestamp, and the TCP flags of every
flow record.

NET-FLi introduces a new compressed bitmap index
variant, which we call COMPAX. Existing bitmap indexes,
such as Word-Aligned-Hybrid (WAH) [49], Run-Length
Huffman (RLH) [45], or Byte-Aligned Bitmap Codes (BBC)
[6], have been shown to offer indexes that are many times
smaller than traditional tree-based indexing data structures
[48]. Our evaluations show that COMPAX is superior to the
state-of-the-art index WAH in terms of compression rate,
indexing throughput, and retrieval time.

Bethel et al. [8] adopted WAH-compressed bitmap indexes
to reduce duty cycles of queries in the context of network traf-
fic visualization. Their work focuses on index construction
only; no mechanisms are provided to retrieve data from a
flow archive to support detailed root-cause analysis. More-
over, the work does not address the challenge of compressing
and storing flow records in real time.

Connection with sorting techniques: There are several
studies [7,31,32,40] that propose sorting techniques to
increase the average length of run-length-encoded sequences
and thus the compression rate of compressed bitmap indexes.
Contrary to previous works, we do not focus on finding an
optimal sorting strategy. Instead, we propose a sorting strat-
egy that can be performed online. This stream reordering
approach leads to both reduced disk space and retrieval time.
In addition, this approach can also be of interest for other
bitmap index creation techniques.

3 Background

Before describing our solution in detail, we briefly revisit the
concept of network flow, which is essential for our frame-
work. The network flow structure has been introduced in the
area of network monitoring to capture a variety of infor-
mation related to network traffic. A flow is defined as a
unidirectional sequence of network packets sharing source
and destination IP address, source and destination ports and
transport protocol. Network equipment, such as routers, pro-
vides built-in monitors (referred to as flow meters) that main-
tain statistics on the flows observed, such as the number of
bytes, packets, or TCP flags. Once a flow is considered termi-
nated, the statistics are exported as a flow record to a collector
device.

Flow records consist of a predefined data structure used
to represent the fixed-size attribute fields. Over the years,
different export protocols (e.g., Netflow v5, Netflow v9,
IPFIX) have been proposed. Netflow v5, the most widely
used protocol, uses 48 Bytes (including three padding bytes)
to encode 19 flow attributes of a single record. In Fig. 2, we
depict the network flow attributes that we use in our setting,
along with a simple description of the fields. By archiving
flow records collected over time, a large repository docu-
menting all end-to-end network communication patterns can
be created. This repository provides a valuable source of
information for many analysis tasks conducted on a daily
basis by administrators, such as the examination of anoma-
lous traffic patterns, forensic investigations, usage account-
ing, or traffic engineering.

4 Architecture

In this section, we describe our approach and explain our
design choices. An overview of our solution is depicted in
Fig. 3. Our solution comprises the following parts:

1. A data preprocessing phase reorganizes the records in the
flow in order to achieve better locality and boost com-
pression (Fig. 3b). This step is optional.

2. Separation of the stream in a columnar manner (Fig. 3c).
3. An archiving backend that compresses blocks of the

incoming flow data (Fig. 3d).
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Fig. 3 NET-FLi consists of the following steps: a Streaming multi-
attribute data are input in the system. b Optionally, a fast packet reor-
dering based on locality-sensitive-hashing principles is performed to

improve both compression and retrieval. c Attributes from the streaming
records are separated. d The compressed columnar archives are created.
e Compressed bitmap indexes are created on the fly, in parallel

4. A compressed index encoding the flow information
into the novel COMPressed Adaptive indeX format (or
COMPAX) (Fig. 3e).

The above tasks are executed on the fly and in parallel, which
imparts the high performance to our solution. The optional
online reordering step repacketizes the flows using an online
implementation of a locality-sensitive hashing-based tech-
nique (online LSH or oLSH). This step results in signifi-
cantly better compression ratios for both archived data and
the data index. This approximate sorting is computationally
light, thus supporting an on-the-fly execution over the stream-
ing network data. Although this optional process slightly
reduces the number of processed flows, it results in reduced
archive and index storage and eventually leads to lower query
response times.

Finally, a component outside the archival solution is the
query processor. Given a search query and using the indexes
created, the query processor identifies historical flows that

match the criteria given and retrieves them by uncompress-
ing only the relevant portions of the archive data.

Below, we provide more details on each of the compo-
nents. We first cover the archival and indexing solution and
later the stream reordering methodology.

4.1 Compressed archive of flow data

The input to our system consists of streaming network flow
records. As mentioned, flow records can record a number
of predefined communication attributes; in our system, we
utilize 12 such attributes (cf. Fig. 2).

The incoming flow records are packetized and processed
using a tumbling data window of M flows (Fig. 3c). Even
though windowing the data reduces the effective compres-
sion rate, this allows us to provide selective decompression
of archive blocks, hence significantly speeding up the query
execution time.
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Practical considerations at this stage are the size of the
data window. Larger windows will offer a better compression
rate, but least selective data retrieval during search time. In
an effort to reduce cache misses, we use M = 4,000 records
in our prototype implementation; this reflects the amount of
processed data (12 attributes × 4,000 records) that fits into
the L2 cache of the system. We also experimented with larger
flow record block sizes, but noticed that changing the block
size does not significantly affect the compression rate. The
overall query response time of the system was best when
using blocks of 4,000 records, because this provides a finer-
grained access on the archived data. In addition, fewer data
have to be decompressed at query time.

For all subsequent phases, the data are treated in a colum-
nar manner, and each attribute (column) of the flow records
is processed independently. Each of the blocks of concep-
tual data columns is compressed using a desirable com-
pression scheme. Compression algorithms for data columns
are interchangeable. We choose the Lempel-Ziv-Oberhumer
(LZO) compressor [38] as our default compression algo-
rithm, because it provides a nice compromise between com-
pression speed and compression size. In particular, it has
been empirically demonstrated that LZO is four to five times
faster in decompression than zlib [21], even when using zlib
at the fastest compression level [39].

To be able to exploit sequential writes to the disk, the com-
pressed blocks of streaming data are not appended to the data
archive as soon as they are created. Instead, the compressed
columnar blocks are initially buffered and only flushed to
disk when the buffer is full1 (Fig. 3d).

4.2 COMPressed Adaptive IndeX: COMPAX

Concurrently with the creation of the compressed flow data
archive, a compressed bitmap index is constructed, which
facilitates a rapid location of relevant portions in the archived
data during the querying process. We call this new bitmap
index “COMPressed Adaptive indeX” or COMPAX. It is
built using a codebook of words that significantly reduce the
bitmap index size. The entire process is performed on the
fly. We begin by elucidating the creation and usefulness of
traditional bitmap indexes.

4.2.1 Bitmap indexes

The concept of bitmap indexing has been applied with
great success in the areas of databases [17] and information
retrieval [19]. The basic notion is to keep k bitmap vectors
(columns), one for every possible value that an attribute can
assume (k refers to the attribute cardinality), and to update
them at every insertion by appending a “1” to the bitmap

1 In our implementation, we allocate 4 MB for each column buffer.

Fig. 4 An example of a bitmap index

i corresponding to the inserted value and “0” otherwise. An
example of a bitmap index with k = 8 is illustrated in Fig. 4.

In addition to fast updates, bitmap indexes allow inex-
pensive bitwise AND/OR operations between columns. For
example, given the bitmap index of Fig. 4, to retrieve the row
numbers where the record was either 5 or 7, it is sufficient to
perform the bitwise OR between columns 5 and 7. The desir-
able rows are indicated by the positions where the resulting
bitmap is 1.

Another key property of bitmap indexes is that subsequent
insertions do not require reorganization of the existing index,
as new bit values can be appended easily to the end of the
index.

Compressed variants of bitmap indexes have appeared in
the literature [48], with the most popular variant being the
World-Aligned-Hybrid (WAH) [49], which has been used for
indexing and searching on a multitude of data sets, including
scientific simulations results and network flow reposito-
ries. WAH uses run-length-encoding principles to compress
homogeneous sequences of sets of the same symbol. Com-
pression is not only beneficial for reducing space but also
for improving the performance of boolean operations. Log-
ical bitmap operations can be executed directly on com-
pressed bitmaps by using run-length-encoded sequences to
decrease the number of bitwise comparisons. More recently,
the Position List Word-Aligned-Hybrid (PLWAH) [14] has
been introduced. It represents a variant of WAH offering bet-
ter compression performance for uniformly distributed data.
In the experimental section, we compare COMPAX with both
WAH and PLWAH.

4.2.2 COMPAX encoding

We compress each bitmap index in a column manner on the fly
using our COMPressed Adaptive indeX (COMPAX). There
are two variants of COMPAX: one-sided (or COMPAX) and
two-sided (or COMPAX2). We adapt this terminology from
[50], in which BBC bitmap index encoding offers a two-
sided variant that compresses sequences of both zeros and
ones, whereas the one-sided variant focuses on sequences of
both zeros only. COMPAX2 offers an extended codebook,
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Fig. 5 Example encoding of a raw bitmap vector (top) corresponding to a single bitmap index column (as in Fig. 4) using the WAH (middle) and
the one-sided COMPAX method (bottom). The one-sided COMPAX codebook is shown at the bottom-right

which allows better compression but introduces more com-
plex bitwise operations. More details will be provided below.

COMPAX uses a codebook of four word types and com-
presses sequences of zeros with run-length encoding. The
following five 32-bit wide word types are used to encode the
incoming bit stream processed in chunks of 31 bits:

1. A Literal [L] represents a 31-bit-long non-zero sequence
of bits; it is encoded as a 32-bit word having the first bit
as one (1), e.g.,

1 0011100 11000010 00110000 00000000

2. A 0-Fill [0F] encodes a sequence of consecutive chunks
of zero bits only by means of run-length encoding.
For example, a portion of a bitmap index column consist-
ing of a sequence of 3 × 31 zero bits is encoded within
a single 32-bit word as

000 00000 00000000 00000000 00000011

where the first 3 bits encode the codeword type (0-Fill)
and the remaining 29 payload bits encode the number of
31-bit chunks from the original sequence.

3. An [LFL] word condenses sequences of [L]-[0F]-[L]
words after applying null suppression. In particular, if in
each of the two literal words in the sequence, only one of
the payload bytes is non-zero (“dirty”), and if the 0F rep-
resents a sequence shorter than 256 × 31 bits, the 3 dirty
bytes are packed into a single [LFL] word. An example
of how the [LFL] codeword is formed is shown in Fig. 6.
The 8-bit header encodes the word type (3 bits) and the
positions from 0 to 3 of the literals’ dirty bytes (4 bits in
total). The last bit is unused.
A real example of [LFL] encoding is depicted in Fig. 5.
The raw uncompressed bitmap vector depicted on top

Fig. 6 Example of bit packetization in the [LFL] codeword

consists of five 31 bits chunks, where only the first and
the last one contain some non-zero bits. As mentioned,
they can be represented as literals [L]. As for both lit-
erals, the non-zero bits are present in only one of the
4 bytes, they exactly have one “dirty” byte (in posi-
tion 3, and 1 for the first and the last, respectively).
The three remaining chunks do not contain any non-
zero bit and can be encoded with a single [0F] word,
where the payload encodes the number of 31-bit chunks
(3 in the example, which can be represented as a single
byte). Therefore, the technique depicted in Fig. 6 can be
applied to encode the two literals and the FILL as a sin-
gle [LFL] word. Its one-byte header specifies the word
type and, in addition, encodes the positions (3 and 1,
respectively).

4. The [FLF] word condenses a sequence of words fol-
lowing a [0F]-[L]-[0F] paradigm and having a single
non-zero byte. As fill words are representing sequences
shorter than 256 × 31 bits, the header includes the posi-
tion of the literal non-zero byte only (2 bits).

COMPAX2 extends the COMPAX codebook with a 1-Fill
(1F) word that compresses sequences of ones. In addition,
the FLF and LFL headers include bits specifying the fill type
(0F or 1F):
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1. The 1-Fill [1F] encodes a sequence of consecutive
chunks of zero bits only by means of run-length
encoding.
For example, a portion of a bitmap index column con-
sisting of a sequence of 3×31 one bits is encoded within
a single 32-bit word as

011 00000 00000000 00000000 00000011

2. The [LFL] word is built as in COMPAX. However, both
sequences of [L]-[0F]-[L] and [L]-[1F]-[L] can be com-
pressed. The word carries an 8-bit header and the three
payload bytes. The first three bits of the header encode
the word type (001 for LFL), whereas the remaining 5
bits encode the two positions (2 bits each) and the fill type
(1 bit representing 1F or 0F). For example, a sequence
such as the one in Fig. 6, but with a 1F word instead of
a 0F, is encoded as

001 01101 00000000 00000000 00000011

3. The [FLF] compresses sequences following the [F]-
[L]-[F] pattern. Contrary to COMPAX, fill words can
be both 0F or 1F. The 8-bit header encodes the word
type (3 bits), the two fill types (2 bits) and the position
of the non-zero byte (2 bits) within the literal. The last
bit of the header is unused.

010 11000 00000000 00000000 00000011

4.2.3 COMPAX compared with other bitmap indexing
schemes

Here, we briefly outline the main differences between
COMPAX and the state-of-the-art bitmap indexing
approaches.

Comparison with WAH: The WAH encoding uses three
word types to encode bitmaps: Literal, 0-Fill, and 1-Fill.
In our work, we introduce the [LFL] and [FLF] codewords
because we observed that such patterns were predominant
in network flow traffic. The one-sided version of COMPAX
omits the [1-Fill] word from the codebook, because such
patterns are quite uncommon. In addition, it provides a sim-
pler implementation of bitwise operations because of the
reduced codebook size. However, in both cases, our coding
scheme leads to significant space savings. In the experimental
section, we show that compared with WAH, even the simplest
COMPAX encoding can result in a space reduction of more
than 60%, particularly when combined with the optional
tuple reordering phase (described in detail later on).

Figure 5 depicts the difference of the one-sided COMPAX
encoding compared with WAH. The bits of a column are
shown row-wise for presentation reason, and the original
uncompressed sequence comprises 155 bits (indicated as 5
verbatim 31-bit words [V]). In this example, we illustrate

COMPAX’s ability to condense three WAH words into one.
In general, the COMPAX encoding packs more information
because of the carefully selected codebook and as such offers
superior compression.

Comparison with PLWAH: Similar to COMPAX, the
PLWAH encoding scheme attempts to achieve better com-
pression rates than WAH in the presence of very sparse bit-
maps. In the original paper [14], the authors of PLWAH
show empirically and analytically the improved compression
rates when encoding data that follow a uniform distribution.
PLWAH boosts the compression rates by exploiting the fact
that FILL words do not usually represent long sequences and
literals themselves contain only few bits set to 1. Therefore,
by storing the positions of those non-zero bits into the pre-
ceding FILL word, it is possible to pack a FILL word and
the following sparse literal into a single codeword. When the
word size is 32 bits, each position can be encoded with 5 bits
(0 to 30). The number of positions that can be stored in the
preceding FILL is a tunable parameter, and, in fact, increas-
ing the number of positions kept corresponds to decreasing
the maximum length of the sequence of homogeneous sym-
bols encoded by the FILL word. By keeping a single position,
the longest sequence of homogeneous symbols that PLWAH
can represent is (225 −1)×31 instead of (230 −1)×31 as in
WAH. In the example of Fig. 5, a PLWAH implementation
that keeps a single position can encode the row bitmap vector
in two words instead of three as WAH does. In fact, the last
literal containing a single bit set to 1 and the preceding FILL
word can be merged by storing the position (9 in the example
of Fig. 5 when counting from the least significant bit) as a
5-bit number just after the two bits header of the FILL word.

In the experimental section, we show that the COMPAX
encoding results in equivalent or, in many cases, better com-
pression rates than PLWAH. More importantly, when coupled
with the proposed tuple reordering phase (oLSH), COMPAX
always outperforms PLWAH in terms of the index compres-
sion rate.

4.3 On-the-fly bitmap index creation

The COMPAX-encoded bitmap indexes are created on the
fly to minimize the space consumption, without having any
adverse impact on the index size (see also Fig. 3e).

For example, assume that already a 0-Fill codeword has
been created on some column, encoding 3×31 bits of zeros,
as in the previous example. Now, suppose that, for the same
column, one more chunk of 31 zeros is observed, and then,
another 0-Fill word of length 1 can be created. By looking
at the previously produced codeword, we are able to merge
them and produce a single 0-Fill word of length 4, which in
binary format will be encoded as

000 00000 00000000 00000000 00000100
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Fig. 7 Example of a query
execution

In a similar manner, we maintain the codewords per column
on the fly. We distinguish the following cases:

– [L]: Unlike the case for 0-Fill words, when a new
31-bit literal chunk is observed, it cannot be merged with
a previously produced literal, so another literal [L] word
is created.

– [LFL]: In order to form an [LFL] codeword, a look-back
examines the two previously produced codewords. If they
are [L] and [F] and the current word is a literal [L] and
all three codewords have only one dirty byte (the remain-
ing bytes are all zero), then these three codewords can be
merged into a single [LFL] word.

– [FLF]: Treated similarly as [LFL].

The advantage of encoding the bitmaps on the fly is the mem-
ory consumption, which, during the entire creation phase, is
almost the same as the compressed bitmap index size. An
example of this encoding is shown at the bottom right of
Fig. 3.

Bitmap index serialization: The COMPAX-encoded bitmap
indexes are serialized to disk by sequentially appending the
compressed columns. In addition, each index is prepended
with a header that contains offsets corresponding to the begin-
ning of each compressed column. In this way, random access
to specific compressed column within a bitmap index is
accommodated. Headers are also compressed. In fact, offsets
are compressed using gap coding and the Simple9 algorithm
[5], which is among the fastest available integer compres-
sion/decompressions schemes.

In our implementation, we create bitmap indexes for the
most commonly queried attributes, such as source and desti-
nation IP addresses, source and destination ports, protocol,
tcpflags, duration and start time. A particular indexing strat-
egy is taken for IPv4 addresses: a separate index is maintained

Fig. 8 Mechanism of the online-LSH (oLSH) for approximate sorting
on a data stream

for each 8-bit block of a 32-bit IP address.2 In this way, we
accelerate wild card queries over networks (e.g., 10.1.*.*) by
combining compressed bitmaps belonging to different byte
indexes using boolean AND operations.

4.4 Querying the system

The proposed architecture can very efficiently answer com-
mon types of queries posed by system administrators and
security analysts. The system users can use both equality
and range queries on attributes contained in the index, such
as source and destination IP addresses, ports, protocols, and
the time-span of interest. The query execution consists of the
following steps, which are also captured in Fig. 7:

1. Columns/attributes involved in the query are determined.
Relevant columns from the appropriate compressed bit-
map indexes are retrieved.

2. Boolean operations among compressed columns are
performed directly without explicit decompression. Flow
record positions on the compressed archive are resolved.

2 The generalization to IPv6 addresses is straightforward.
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3. The appropriate portions of the archive (relevant com-
pressed data blocks) are decompressed, and the results
are supplied to the user.

We will explain the above process with an example.
Consider the case of an worm attack. A sample query that
the system administrator can issue to discover all systems
contacted for a set of compromised nodes is as follows:

Query: “Find all destination IP addresses contacted by
the source IP address range 10.4.*.* at destination port
22.”

The various substeps are depicted in Fig. 7. As bitmap index
files are created on an hourly basis, first the bitmap index
within the time range of interest in the query is retrieved. The
bitmap indices for SrcIP.byte1, SrcIP.byte2 and DstPort are
retrieved, and from those, the relevant compressed columns
10, 4, and 22, respectively, are fetched. Note that we do not
need to uncompress the columns; an AND operation can be
performed directly on the three compressed columns, as one
does not need to AND the portions containing the 0-Fill code-
words.

Suppose the join result of the three compressed columns
indicates that there are matches at flow row numbers
{200, 10010, 10500}. Because the user wants to retrieve the
destination IP addresses, the query processor will need to
uncompress the relevant blocks in the archive of column
DstIP. Assume that each of the compressed blocks on the
archive contains 4,000 flow records. Therefore, to access the
200th, 10010th, and 10500th flow record, we need to retrieve
only the first and third compressed blocks in the archive. The
start position of those blocks is provided in the header of
the archive. Finally, the result set of the three destination IP
addresses, contacted by the specified range of source IPs in
the query, is returned to the user.

5 Online-LSH (oLSH) stream reordering

Here, we introduce an online stream reordering mechanism
that is based on the principle of locality-sensitive hashing
(LSH) [23,34]. We call this variant online-LSH or oLSH for
short. It implements an intelligent buffering mechanism with
the purpose of packing together similar records from a data
stream. It has been shown that data sorting leads to smaller
and faster bitmap indexes [40,32]. FastBit [17], the refer-
ence implementation of the WAH algorithm, accommodates
an optional off-line column sorting to decrease index sizes.
In this work, we rely on sorting to decrease the disk con-
sumption of both indexes and data archives. Our approach is
consonant with the permuting, partitioning, and compression
(PPC) principle [18]: after permuting the order of incoming
stream records, the records are partitioned into groups of sim-

ilar records, with the goal of boosting the compression ratio
of general-purpose compressors.

The characteristics and benefits of oLSH are as follows:

– It reorders the incoming data records in a fast and effec-
tive way, resulting in data blocks with lower entropy.

– It improves the compression rate, leading to smaller
bitmap index and archive sizes.

– By placing similar records in close-by positions, it even-
tually leads to better query response times, because fewer
data blocks need to be decompressed from the data
archive.

The stream reordering is implemented by a hash-based
buffer, which uses several LSH-based functions to group flow
records by content. In fact, the basic premise of LSH is to use
hash functions to direct vectors that are close according to a
distance function into the same hash bucket with high prob-
ability. The sorted output stream is then built by constantly
flushing similar records from the hash table (cf. Fig. 8).

We consider each flow record as a vector r ∈ Nd , where d
is the number of the attributes relevant to the sorting process.
The purpose of the LSH functions is to aggregate “similar”
flows to the same hash bucket. Each hash bucket eventually
contains a chain of “similar” records. We employ n LSH
functions based on p-stable distributions, such as the ones
proposed by Datar et al. [13]. Each LSH hash function ha,b :
Nd → Z maps a vector r into a single value (“bin”) and is
defined as

ha,b(r) =
⌊

aT r + b

W

⌋
(1)

where a is a d-dimensional random vector with each compo-
nent chosen independently from a Gaussian distribution,3 W
is the width of a bin, and b is a real number chosen uniformly
from the range [0, W ].

In our scenario, we wish to pack together flow records
based on the attributes queried most often. Therefore, we
chose r to be an 11-dimensional vector (d = 11) consisting
of the attributes source and destination IP addresses (2 × 4
bytes, i.e., 8 dimensions) as well as source and destination
ports and protocol numbers (3 dimensions).

We reduce the probability of collisions of unrelated flows
by computing the hashtable index value as a sum of many
LSH functions. In detail, H1(r) = ∑n

i=1 hai ,bi (r) mod P
from the n mappings of r, where P is the hash size. In addi-
tion, as collisions of unrelated records may still occur within
each hash chain, chains are kept ordered using an Insertion-
Sort algorithm. The key used for sorting in the InsertionSort

3 The Gaussian distribution is 2-stable; it can be shown that elements,
which are close in the Euclidean distance sense will be mapped to the
same value with high probability, and to distinct values otherwise [13].
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Program 1 oLSH reordering of the streaming records
processElement(hashtable hash, flow record r){

P = hash.length(); // size of hashtable

h1 = sum( h(a[i], b[i], r) ) mod P; // hashtable index
h2 = sum( h(a’[i], b’[i], r) ) mod Q; // used for

// InsertionSort

chain = hash[h1].InsertionSort(r, h2);
if (chain.length() > maxBlockSize)

emitBlock(chain, archive, index); // send to archive
// and index

maxCount = hash.totalNumBuckets();
if (maxCount > MMax){ // memoryBudget

do{
chain = longest_chain(hash);
emitBlock(chain, archive, index);

} while(hash.totalNumBuckets() > MMin); // minimum
} // threshold

}

Fig. 9 Comparison of positions of a query without (left) and with
(right) LSH reordering

is computed using a different combination of LSH functions
H2 that utilizes different projection spaces:

H2(r) =
n∑

i=1

ha
′
i ,b

′
i
(r) mod Q

The stream reordering process consists of inserting incoming
flow records into the hash and dispatching new blocks to the
compression and indexing components. Whenever the length
of a chain reaches a configurable maximum threshold (max-
BlockSize), the chain is removed from the hash and its content
used to fill a block (or several blocks in case of collisions). We
also employ two thresholds, MMax and MMin, to limit the
number of records to be buffered (i.e., the memory budget).
When the total number of flows stored by the hash reaches
MMax, blocks are created by packing (and purging) the lon-
gest chains. The process stops when cnt reaches a value lower
than MMin. A pseudocode of the online reordering process
is shown in Program 1.

Figure 9 illustrates the benefits of online record reor-
dering. We compare the row positions (matching records)
returned by an IP query lookup when executed over two
NET-FLi flow repositories storing exactly the same traffic
and built without and with oLSH reordering enabled. In
the unsorted version, matching positions are spread all
over the column, whereas in the version using the online-
LSH matching, records are concentrated in the first half.
Data retrieval from compressed columns benefits from this
because fewer blocks from the archive must be accessed
and decompressed. In addition, as the blocks store sets
of homogeneous records, the average block decompression
times are substantially reduced and therefore, as we show in
the evaluation section, faster decompression speeds can be
achieved.

Finally, Fig. 10 displays an instance of the actual bit-
map index capturing the first byte of the Source IP field
(256 columns) with and without the reordering compo-
nent. The color coding on the bitmap index indicates which
COMPAX codeword is used (0-Fill is shown in white).
At the bottom of each bitmap index, we show the num-
ber of codewords for each column. It is easy to see that
the oLSH reordering results in a significantly lower num-
ber of codewords used for encoding the same amount of
information.

6 Evaluation

In this section, we evaluate the implementation of our
approach. We investigate critical performance metrics of the
archival and data retrieval process. In addition, we compare
it with other prevalent bitmap indexing approaches.

We use two real data sets in the evaluation:

– Six days of NetFlow traces of access traffic from a large
hosting environment (HE).

– Two months of NetFlow traces of internal and external
traffic in an average-sized enterprise production network
(PN).

Each data set is stored as a set of flat files, each corresponding
to an hour of traffic. Details of the two data sets are listed in
Table 1. The traffic of the two networks differs significantly
in terms of the distribution of IP addresses and service ports.
The flow attributes included in the index and archived data
columns are presented in Table 2.

We have implemented the indexing, storage, and querying
techniques as a C++ library of 25,000 lines of code. The
library comes with three similarly tuned implementations of
WAH, PLWAH and COMPAX compressed bitmap indexing
algorithms. In all cases, boolean operations do not require
any explicit bitmap decompression. For portability reasons,
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Fig. 10 Visualizing the bitmap index with and without the oLSH component. This bitmap index captures the first byte of the Source IP field (256
columns). The different COMPAX codewords indicated in different colors

Table 1 Data sets used

Data set # Flows Length Size

Hosting environment (HE) 231.9 million 6 days 6.9 GB

Production network (PN) 1.2 billion 62 days 37 GB

Table 2 Flow attributes present in the index and archived data columns

Attribute Size Index Archive

Source IP address 4 bytes � �
Destination IP address 4 bytes � �
Layer 4 protocol 2 bytes � �
TCP/UDP source port 2 bytes � �
TCP/UDP destination port 2 bytes � �
Number of packets 4 bytes – �
Number of bytes 4 bytes – �
First time stamp 4 bytes � �
Duration 4 bytes – �
TCP flags 1 byte � �
Source AS number 2 bytes – �
Destination AS number 2 bytes – �

we decide not to exploit any specific instruction set, such as
the SSE4.2 [29], which provides the POPCNT instruction for

counting the number of bits set to 1 in an unsigned word.4

Instead, we rely on precomputed lookup tables for imple-
menting bit counting.

The software does not require any external library except
for lzo [38], which provides us the LZO1X-1 [39] algo-
rithm implementation that we use for compressing columns.
LZO1X-1 does not offer the best compression rate, but
instead is designed for achieving high compression and
decompression speeds.

All experiments have been executed on a commodity desk-
top machine equipped with 2 GB of DDR3 memory and an
Intel Core 2 Quad processor (Q9400) running GNU/Linux
(2.6.28 kernel) in 32-bit mode. The processor has four cores
running at 2.66 GHz and 6 MB of L2 cache. We store flows on
a 320-GB desktop hard drive5 formatted with a single Ext3
partition.

4 The GNU compiler (GCC) provides the built-in function built-
in_ popcount for exploiting such an instruction, if present.
5 The hard drive is a 7200 rpms Hitachi HDP725032GLA380 equipped
with 8 MB of cache. The system is capable of performing cached read-
ing at 2400 MB/s and unbuffered disk reads at 80 MB/s (measured with
hdparm).
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Table 3 Disk space requirements when compressing the two data sets
with general purpose compressors (gzip and lzop). We report the disk
consumption when attribute columns are compressed independently and
when the compression is done on the entire flow trace

Row-wise Column-wise

Data set Raw GZIP LZOP GZIP LZOP

HE 6.9 GB 2.5 GB 3.5 GB 2.5 GB 3.6 GB

PN 37 GB 8.1 GB 13.2 GB 8.8 GB 13.4 GB

Table 4 Disk space requirements when compressing flow data with
NET-FLi with and without oLSH component enabled

NET-FLi archive

Data set Raw LZO LZO+oLSH

HE 6.9 GB 3.7 GB 2.6 GB

PN 37 GB 13.8 GB 8.2 GB

6.1 Disk utilization

We measure the disk consumption of our methodology for
both the archive and the compressed bitmap indexes.

Archive size: We compare the disk space requirements when
storing the flow data using different storage approaches:

– The flow data are stored as uncompressed flat files.
– The flow data files are compressed with popular compres-

sion utilities: gzip and lzop. This represents the typical
scenario for flow archive systems [25].

– The flow data files are split attribute by attribute. Each
attribute column is independently compressed using gzip
and lzop.

– Our proposed archival method that relies on a compressed
columnar approach with small compression blocks. We
evaluate this approach with and without oLSH reordering.

In Table 3, we report the disk consumption when flow data
traces are compressed using the general-purpose compres-
sion utilities gzip and lzop. For both utilities, we measure
the disk consumption when compressing entire flow files
(row-wise) and when columns corresponding to different
attributes within a flow file are compressed independently
(column-wise).

When compressing the flow records, the disk space is
lower when using gzip compression than when using lzop.
This is because the lzo algorithm implemented by the
lzop utility is optimized for speed rather than compression
efficiency. However, this is exactly the reason for adapting
lzo in a streaming setting, where flow records have to be com-
pressed on the fly. When compressing each attribute column
independently, the disk consumption slightly increases.

Table 5 Comparison of index sizes built using different bitmap
encodings without the oLSH component enabled

Data set WAH PLWAH COMPAX COMPAX2

HE 8.1 GB 5.1 GB 4.9 GB 4.9 GB

PN 26.3 GB 17.4 GB 18.6 GB 18.0 GB

Table 6 Comparison of index sizes built using different bitmap enco-
dings with the oLSH component enabled

Data set WAH PLWAH COMPAX COMPAX2
oLSH oLSH oLSH oLSH

HE 4.8 GB 3.4 GB 3.3 GB 3.2 GB

PN 15.1 GB 11.7 GB 12.8 GB 11.6 GB

In Table 4, we report the disk consumption when NET-
FLi stores the data sets with and without enabling oLSH
reordering of flows.

We observe that the column-oriented NET-FLi archive,
without the oLSH component enabled, is up to 6% bigger
than the flat files compressed with lzo. This marginal space
overhead is attributed to the fact that we compress data in
small blocks (up to 4,000 records each). This leads to a
reduction in the compression rate. In addition, our approach
requires some additional space for keeping the required
header at the beginning of every block. However, the above
additions in our approach allow the selective decompression
of any block in the archive.

The most interesting results of these measurements are
the disk savings introduced by the oLSH component. In fact,
the on-the-fly reordering allows the disk consumption of our
storage architecture to be reduced by as much as 40%. There-
fore, the combination of the oLSH and lzo leads to similar
compression rates as gzip when applied to the flat files. Thus,
our storage architecture consumes as much space as standard
flow-based storage solutions, but can leverage the substan-
tially higher decompression speed provided by lzo during
data retrieval operations. As we show later in the evalua-
tion, the oLSH component further boosts the decompression
speed.

Index Size: We now focus on the disk consumption of
the indexes built using different compressed bitmap index-
ing technologies. We compare the disk requirements when
indexing the seven (most queried) flow attributes reported in
Table 2 using our encodings COMPAX and COMPAX2 and
the existing WAH and PLWAH.

Table 5 reports the disk consumption used by the WAH,
PLWAH, COMPAX and COMPAX2 indexes without oLSH-
based sorting. Compared with WAH, COMPAX and
COMPAX2 indexes are up to 40% smaller, whereas PLWAH
offers comparable compression rates.

As shown in Table 6, enabling the oLSH component
allows the index size to be further reduced not only for
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COMPAX but also for other bitmap indexing techniques,
making our contribution of independent interest. For exam-
ple, WAH indexes are more than 42% smaller when oLSH
is enabled. COMPAX2 is the bitmap indexing technology
providing the lowest disk consumption (up to 30% lower
than WAH), but the gain is only marginal compared with
COMPAX and PLWAH, which provide similar compression
rates when oLSH is enabled.

Visualizing the oLSH improvements: One can also com-
municate the improvements attributed to the oLSH record
reordering process visually. In Fig. 11, we plot the bitmap
index as encoded by COMPAX and COMPAX with oLSH
by depicting an uncompressed version of the bitmap. The var-
ious codewords are indicated with different colors provided
in the legend. We display the bitmap indexes for a number
of attributes, namely, all four bytes of source IPs and desti-
nation IPs, source and destination ports (only partially), and
protocol.

As an example, the bitmap index on the top-left-hand side
of the figure captures the first byte of the source IP field of
the network flow records. There are 256 columns on this bit-
map, one for each of the 256 values possible. Each of the
bitmap indices displayed reflects the relevant field for a traf-
fic duration of one hour. Next to the bitmap encoded using
COMPAX, we position the resulting bitmap index when
oLSH is enabled. On the far-right-hand side, we display the
size ratio of the oLSH-encoded bitmap index versus that of
the unsorted traffic.

The visual comparisons cogently show the power of the
oLSH process in producing compact bitmap indexes.

6.2 Stream record processing rates: archive and index

NET-FLi has been designed to handle high-speed streams of
flow records, so in this section, we measure the average sus-
tainable insertion rate, expressed in flows per second (f/s). We
test our storage solution by feeding it with uncompressed flow
traces stored on a mainstream solid-state drive.6 The drive
provides a sustained reading speed of 170 MB/s correspond-
ing to more than 5 million f/s. The indexing software has
been configured to fetch flows sequentially from the solid-
state drive and to store indexes and compressed columns to
the mechanical hard drive. This simple setup allows us to
reproduce flow rates that can only be observed in very large
ISP networks.

We measure the insertion rate of our solution with and
without enabling oLSH flow reordering and compare it with
the insertion rates of WAH and PLWAH-based indexes. In
Table 7, we report record processing rates for building both
the index and the archive. We compare three variants:

6 Intel X-25M G1, 80 GB model.

Table 7 Record processing rates of our system when building both
the index and the archive. We compare building the index using WAH,
COMPAX and COMPAX+oLSH

Data set WAH PLWAH COMPAX COMPAXoLSH

HE 768K f/s 924K f/s 936K f/s 474K f/s

PN 1150K f/s 1220K f/s 1255K f/s 513K f/s

Table 8 Disk consumption (in KB) of WAH, PLWAH, and COMPAX
when indexing IP addresses and ports with a uniform distribution

Field WAH COMPAX PLWAH

Source IP address 52296 21046 29145

Destination IP address 52285 21049 29144

Protocol 435 449 396

TCP/UDP source port 14941 13446 7602

TCP/UDP destination port 14941 13444 7602

First time stamp 2247 1958 1870

1) indexes encoded with WAH, 2) with PLWAH, 3) with
COMPAX , and 4) with COMPAX and additional oLSH reor-
dering.

Without oLSH reordering enabled, COMPAX offers inser-
tion rates that are higher than WAH and comparable to
PLWAH. The advantages in terms of insertion rate are not
only related to the lower disk consumption. In fact, we can
measure similar differences (in percentage) when index seri-
alization is disabled. By using a profiler, we realized that
COMPAX is much more cache-friendly than WAH. Indeed,
COMPAX can perform its online compression step that can
pack three WAH words into a single word (FLF or LFL)
without requiring many additional L2 cache misses on aver-
age. The test is confirmed by the higher insertion rate on the
data set HE, which, because of its entropy in many attribute
fields, taxes the CPU cache more than the PN data set. Simi-
lar results can be observed for PLWAH, which offers similar
indexing rates as COMPAX.

Without enabling oLSH reordering, our storage solution
can handle as many as 1.2 million f/s. To put these numbers
into perspective, medium–large networks exhibit peak rates
of 50,000 flows/sec or more. When the oLSH component
is enabled, the insertion rate is reduced to half. The drop is
substantial, but this eventually results in a disk space reduc-
tion of as much as 55% and in a significant improvement in
response time (details in the following section). Nonetheless,
it is worth considering that 500K f/s is still more than double
the maximum insertion rate reported in [42], where no data
compression was performed.

6.3 Extended comparison with PLWAH

As discussed in Section 4, PLWAH and the COMPAX have
been introduced for achieving better compression rates than
WAH in the case of sparse bitmaps. On real traffic traces, the

123



Real-time creation of bitmap indexes on streaming network data 301

Fig. 11 Visual representation of the savings induced by the oLSH component. We display the bitmap index with and without the online reordering

two techniques provide equivalent compression rates. Here,
we offer a more extended comparison with PLWAH under
the more challenging condition of uniformly distributed data.
Even though such traffic patterns are quite uncommon during
regular traffic conditions, anomalous events such as these
caused by port scans and worms may lead to distributions
that are close to uniform. It is worth noting that providing
higher compression rates under such circumstances is desir-
able because it renders the storage architecture more resilient
to attacks.

To evaluate the different encoding techniques under this
scenario, starting from a real flow trace of 2 million records,
we synthetically create a new flow trace in which IP addresses
and ports are uniformly distributed. We index the syntheti-
cally generated trace using WAH, COMPAX and PLWAH.
In Table 8, we report the disk consumption, expressed in KB,
when indexing some of the most queried fields.

When indexing IP addresses, COMPAX offers signifi-
cantly smaller bitmap index size than WAH and PLWAH.
In particular, COMPAX-encoded indexes are just 40% of the
size of WAH-encoded indexes, whereas PLWAH-encoded
indexes are 56%.

On the other hand, when indexing uniformly distributed
Port numbers, PLWAH offers the best compression rate. This
is the case, because the FLF and LFL codewords introduced
by COMPAX cannot be applied frequently, as the length of
the fill is often longer than 256.

To better illustrate why PLWAH provides better compres-
sion rates than COMPAX when indexing the port fields,
we analyze the COMPAX and PLWAH-compressed bitmap
indexes. In particular, we are interested in understanding
for which bitmap index columns PLWAH compresses better
than COMPAX. In Fig. 12, we report the disk consumption
(expressed in numbers of 32-bit words) for every column of
the bitmap index. Columns have been ordered by number
of matching results, i.e., the number of ones they carry, so
that sparse columns are on the left and dense columns on
the right. The figure shows a clear separation between the
two encodings: PLWAH performs better when compress-
ing sparse columns, whereas COMPAX offers better com-
pression rates for denser columns, which usually require
more space. However, the difference in space consumption
between COMPAX and PLWAH is higher for dense col-
umns and lower otherwise. This means that when perform-
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Fig. 12 Comparison between
COMPAX and PLWAH. The
x-axis shows the number of
results (number of ones)
contained in a column. The
y-axis shows the number of
32-bit words (codewords) that
encode the particular bitmap
index column. At the bottom of
the figure we also juxtapose a
‘win–lose’ graph that illustrates
when each technique is better.
Evidently, COMPAX
compresses data using fewer
words, when the data contain
large number of matches (dense
columns). Sparse columns
holding few matches are
encoded more efficiently using
PLWAH

ing queries for common ports (dense columns), the COM-
PAX index requires fewer words to be fetched from the
disk.

The behavior of the two bitmap encodings when indexing
ports and IP addresses suggests that when one is interested in
achieving the best possible compression rate, different com-
pression mechanisms can be used for different data attributes.
However, the adoption of heterogeneous compressed bitmaps
requires boolean operations to be implemented across differ-
ent encodings. While this approach is feasible, in practice,
it will substantially increase the complexity of the software,
making it harder to test, debug and maintain.

In general, the reasons for selecting COMPAX over
PLWAH are the following: First, as IP addresses typically are
the most commonly queried attributes, COMPAX will lead to
better compression for these attributes and hence increase the
operating system cache effectiveness. Second, when deploy-
ing the system on larger networks, the number of distinct IP
addresses (and therefore the entropy) is expected to increase
significantly, whereas the distribution of ports under normal
traffic conditions is unlikely to approach a uniform distri-
bution. Third, the disk consumption advantage of PLWAH
over COMPAX when indexing the port fields is significant
only for uncommon ports that, in any case, do not require
substantial indexing space.

6.4 Index performance

Now, we evaluate the overall index performance with respect
to other currently commercial available solutions, such as
WAH, which is used in many databases (e.g., Oracle).
WAH has already been extensively used by the research
community, and there is a well tested and freely available
implementation of WAH in FastBit [17]. We compare the
search performance on just the bitmap index, when encoded

Fig. 13 Comparison of index search time for 3,000 random IP
addresses

with WAH, COMPAX, or COMPAX+oLSH. We pose que-
ries using random IP addresses, since IP addresses are typ-
ically the most queried attribute. By querying exact IP
addresses, we are evaluating the performance of boolean
operations over compressed bitmaps as each IP lookup
requires the bitwise AND-ing of four different bitmaps, each
corresponding to the four bytes of an IPv4 address. We con-
duct the experiment over the more heterogeneous ‘Hosting
Environment’ (HE) dataset.

We choose 3,000 random distinct IP addresses and group
them into 30 sets of 100 addresses each. For every set, we
report the time for executing the 100 independent IP address
lookups executed sequentially. To put into perspective the
performance offered by our system, we also uses WAH
indexes in addition to COMPAX-based indexes. Because we
are interested in measuring the performance of the index in
terms of the CPU efficiency, we built an index over 3 days
from the HE data set, which can be completely be cached by
the system. The size of the index is 1.5 GB for WAH, 845
MB for COMPAX and 314 MB for COMPAX+oLSH. The
measurements are reported in Fig. 13.
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The response times shown depend entirely on the per-
formance on the boolean operations among the IP address
byte indexes. The index query on the COMPAX-based index
is on average 15% faster than the WAH-based index. This
result shows that adopting a more complex bitmap encod-
ing does not necessary result in performance penalties when
implementing boolean operations directly on the compressed
bitmaps (i.e., without explicit decompression). In fact, for
COMPAX bitmaps, the more complex decoding is compen-
sated by increased cache locality, which is a direct conse-
quence of the space savings (smaller working set).

COMPAX+oLSH is four times faster, on average, than
WAH to complete the IP address lookups. In this case, the
improvement is not just due to increased cache locality,
but rather to the sorting itself. The sorting results in literal
words that are more dense; so, fill words can represent longer
sequences. In this way, the number of bitwise instructions is
substantially reduced [31].

6.5 Query performance: index and archive

Finally, we measure the complete system performance dur-
ing query time, which corresponds to evaluating the retrieval
time of both index (with COMPAX encoding) and archive.
Index and archive are created with and without oLSH reor-
dering. We measure the cumulative response time required
when executing queries over the 1.2 billion flows of the data
set PN. The index+archive without the oLSH option amounts
to approximately 31 GB. With oLSH enabled, the resulting
repository size is 20 GB. Naturally, we expect that the oLSH
variant results in a faster query response time.

Low selectivity: We pose 10,000 random IP address queries
with an increasing number of wild cards such as

srcIP = 10.4.5.*, dstPort=X, dstIP = 10.5.5.*
srcIP = 10.4.5.*, dstPort=X, dstIP = 10.5.*.*
srcIP = 10.4.*.*, dstPort=X, dstIP = 10.5.*.*
...

to create queries that would have to retrieve an increasing
number of results. We sort and ‘bin’ the number of results into
a histogram format. Each bin represents the average number
of results returned by all queries in the same bin. In Fig. 14,
we report three measures:

Index time: The time needed to search the index and
join the resulting indexes.

Archive time: The time needed to retrieve the data from
the archive.

Total query time: The sum of these two measures.

Each of the graphs also illustrates the runtime with and with-
out the oLSH option. One can observe that by using oLSH
reordering the total query time improves by more than 2
times. This result is attributed to the smaller sizes of both

Fig. 14 Query time versus number of results: comparison of the total
query time (top) and its separation into time on the index access (mid-
dle) and data retrieval time from the archive (bottom), with and without
oLSH reordering

index and archive after oLSH reordering. For the queries
with the highest selectivity, the response time can reach 3 s,
whereas for the queries with lower selectivity, the results
can be returned in less than a second. This outcome is very
encouraging because we do not make the query be selective
with respect to time (i.e., “find only matches during day A”),
but queried the entire flow repository for results.

On the same figure, in the bottom graph, we segregate the
total query time into its components. The time to retrieve
results from the index and perform a join on them (Fig. 14
middle) is nearly constant and approximately on the order
of 500 ms. The majority of the search query is spent on the
retrieval from the archive, which is depicted on the lower part
of the figure. One can easily observe the great performance
boost attributed to oLSH reordering. The careful packaging
of flow records in both the index and the archive eventually
leads to a significant improvement in the query performance.
In particular, the gains from flow reordering in the archive can
reach the 400% range. This is attributed to the better packing
of similar records. In fact, the reordering reduces the num-
ber of blocks that must be decompressed at the data archive
level, and in addition, because of the reduction of the over-
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Fig. 15 Decompression speed in MB/s. Note that for the most commonly queried attributes, such as source/destination IP addresses and ports, the
decompression speed is more than double when oLSH reordering has been applied

all entropy within each block, it boosts the decompression
performance.

High selectivity: In many cases, decompressing the entire
data archive or entire data columns might be required; this
is the case, for example, when one has to compute the set of
distinct IP addresses. For such a scenario, the bitmap index
does not help, as the entire archive on one or more attributes
needs to be decompressed. To evaluate such cases, we mea-
sure the decompression speed when the entire data archive is
unpacked. We measure both variants: with and without oLSH
tuple reordering.

For each network flow attribute, we measure the CPU
time spent on the execution of the decompression routines
only. In this way, we do not take into account the time spent
on I/O, which is higher for the non-ordered data because of
the higher disk consumption. Therefore, the decompression
speeds reported in Fig. 15 (expressed in Megabytes/second)
represent a lower bound for the decompression performance
improvement.

We observe that the oLSH reordering significantly boosts
the decompression speed of the lzo compressor by as much
as 3.6 times. In both data sets, the decompression speed boost
is substantial for IP addresses and ports, which are the most
commonly queried attributes.

It is worth noting that, with the only exception of the time-
stamp attribute archive, the reordering has a positive impact
on the decompression speed. This is indeed expected even
if the system uses IP addresses, ports and protocol attri-
butes (the so called 5-tuple) when performing the oLSH reor-
dering. In fact, there is an high correlation between the 5-tuple
and the remaining fields, with the only exception begin the
timestamp attribute. This can be intuitively explained as a
combination of ports and protocol identifies in the majority
of the cases the networked application (e.g., HTTP usually
runs on port 80/TCP), which, in turn, tends to manifest spe-
cific behaviors in terms of session duration and number of

packets and bytes transferred. Similarly, the source and des-
tination Autonomous System numbers are related to the IP
addresses. The timestamp attribute, on the contrary, is not
strongly related to any other 5-tuple field, and in addition,
it is the only attribute having partially ordered values.7 For
these reasons, timestamp is the only attribute where oLSH
reordering has a negative impact on the compression rate and,
consequently, on the decompression speed.

7 Application of NET-FLi

In this section, we demonstrate the utility of NET-FLi for typ-
ical scenarios in network monitoring: (1) detection of worm
propagation and (2) interactive exploration of the network
traffic history.
Worm propagation: Consider the scenario of an outbreak of
a computer worm (cf. Fig. 16) that exploits a vulnerability of
an application protocol. All network nodes being contacted
by the infected host need to be discovered to (a) quarantine
any other possibly infected machine, and (b) better under-
stand the propagation pattern of the worm.

Filtering a large flow repository for a small subset of flows
is a tedious task, as the entire repository needs to be scanned
linearly. Using the index capabilities of NET-FLi, we expect
to achieve a significant reduction of the time needed to iden-
tify possibly infected machines.

We perform an analysis on the 2-month PN data set con-
sisting of 1.2 billion flows and focus on machine M , which is
suspected to spread a worm using a vulnerability on service
port 123. We query the system for all machines to whom

7 Flow meters export a flow record for a monitored network flow once
it has expired or terminated. The timestamp of the first packet belonging
to the flow is not used by flow meters to impose an order on the exported
flow records.
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Fig. 16 Propagation graph of a worm epidemic used to identify poten-
tially compromised nodes in a network

the machine connected to on service port 123. Therefore, the
query has the form:

SELECT DstIP
WHERE SrcIP = M AND DstPort = 123

Figure 16 displays an example of a worm propagation
pattern: the center node represents a suspicious machine,
whereas an edge signifies a communication link on a vul-
nerable port between the two machines.

The connectivity graph to a node can be created with
NET-FLi by recursively querying for flows emitted by
suspected infected machines in the network. We measure
the time needed to find all 2,225 relevant graph connec-
tions and to retrieve the corresponding dstIP addresses using
COMPAX+oLSH, with a completely empty cache (unmount-
ing the disk) as well as with a ‘warm’ cache at the operat-
ing system level, when other queries have previously been
posed. We repeat the experiment 100 times. We discover
that the uncached query response time is 62.314 s on aver-
age (with a standard deviation σ of 0.798). When reissu-
ing the same query with a previously ‘warm’ cache, the
response time drops down to 2.345 s on average (σ =
0.051). In comparison, the same query executed on a con-
ventional flat flow file repository using linear scanning over
all records takes as much as 6,062 s, i.e., more than two
orders of magnitudes longer than the identical NET-FLi
query.

Fig. 17 Application for interactive exploration of flows and anomalies that is built on top of our technology
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Our results show that the NET-FLi approach exhibits
low response times for locating the candidate records and
returning the flow data. In addition, NET-FLi can exploit
the cache capabilities offered by the operating system, with-
out requiring a custom-made cache manager. The last obser-
vation is particularly attractive for interactive query refine-
ment: for example, in a network investigation, typically a
number of queries are used to narrow down the root cause.
Subsequently, refined queries on previously cached indexes
can be answered almost for free. On the contrary, linear
scan approaches cannot benefit significantly from the LRU-
oriented cache system of the OS.
Interactive exploration: On top of NET-FLi, we built an
interactive graphical interface that enables easy exploration
of network flows. Given a specific IP (port, protocol, etc) and
a time frame, the interface discovers all flows involved, which
are then overlaid on a map of the globe. Results are also aggre-
gated by country. An example of this query interface is shown
in Fig. 17. For the IP address, date, and time (which can be of
a compromised node), we can quickly identify which other
Internet addresses are contacted by this host. Contacted des-
tinations are aggregated by country on the right-hand side.
However, the user can also drill-down on the individual IP
addresses for more information (top-right graph). In addi-
tion, basic flow filtering by country is also incorporated in
the visual interface (bottom-right graph).

Finally, we provide the capability to visualize the actual
bitmap index for any of the attributes indexed. This is a par-
ticularly useful functionality, because it facilitates the visual
identification of anomalies. Consider, for example, the snap-
shot of the bitmap index shown on the bottom left-hand side
of Fig. 17. This captures a portion of the bitmap index for the
attribute ‘Destination Port’ of the network flows. From the
horizontal lines (columns represent the different ports), it is
immediately apparent that some resource is initiating a port
scanning process. If this belongs to an unscheduled activity,
it is something worth investigating by the data administrator.

Such cases can easily be identified by visualizing the bit-
map indexes constructed. In addition, recording an ‘average’
or expected bitmap index profile and monitoring the devi-
ation of the current traffic from that profile can provide an
interesting avenue for discovering network anomalies. These
possibilities can be potentially accommodated on top of the
technology and visualization tools provided, but reside out-
side the scope of the current work.

8 Conclusion

We introduced NET-FLi, a high-performance solution for
high-speed data archiving and retrieval of network traffic flow
information. Our solution achieves the following:

– Data record insertion rates in the range of 0.5M to 1.2M
flows per second depending on the desired compression
level.

– A novel adaptive, compressed bitmap indexing technique,
called COMPAX.

– An on-the-fly stream reordering approach based on
locality-sensitive hashing (LSH) that renders the data
compression rate of flow records equivalent to that of
gzip. This fast record reordering scheme is of general
interest for other bitmap encoding methodologies.

Our solution can be used to drive a wide spectrum of applica-
tions including iterative hypothesis testing in network anom-
aly investigation, on demand traffic profiling, and customized
reporting and visualization. Moreover, we believe that it can
be applied to many other domains challenged by high data
volumes and exceptionally high insertion rates.
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