
10 Gbit Line Rate Packet-to-Disk Using n2disk

Luca Deri∗†, Alfredo Cardigliano∗

IIT/CNR†, ntop∗

Pisa, Italy
{deri, cardigliano}@ntop.org

Francesco Fusco
ETH Zurich

Zürich, Switzerland
fusco@tik.ee.ethz.ch

Abstract—Capturing packets to disk at line rate and with high
precision packet timestamping is required whenever an evidence
of network communications has to be provided. Typical
applications of long-term network traffic repositories are
network troubleshooting, analysis of security violations, and
analysis of high-frequency trading communications. Appliances
for 10 Gbit packet capture to disk are often based on dedicated
network adapters, and therefore very expensive, making them
usable only in specific domains.

This paper covers the design and implementation of n2disk, a
packet capture to disk application, capable of dumping 10 Gbit
traffic to disk using commodity hardware and open-source
software. In addition to packet capture, n2disk is able to index
the traffic at line-rate during capture, enabling users to
efficiently search specific packets in network traffic dump files.

Index Terms—Traffic Dump to Disk, Packet Capture, 10 Gbit
Traffic Monitoring.

I. INTRODUCTION AND BACKGROUND

Most network traffic monitoring and security applications
such as IDS/IPS (Intrusion Detection/Prevention System)
analyze the traffic as it passes by without storing it first. A
persistent copy of the packet can be eventually stored on disk
in sporadic conditions (e.g. in case a security flaw is detected).
The copy can be triggered by specific network traffic, such as
malformed packets to enable deeper analyses. In some cases it
is however mandatory to store the entire network traffic
persistently on disk in order to create a repository that allows
network administrators to travel back in time to analyze past
network traffic conditions. There are many domains where
such a network “time machine” is required:
· In the contexts where the network traffic cannot be

processed in real-time because the analysis processes
are computationally intensive and do not allow the
traffic to be processed in the given time boundaries.

· In fields such as lawful interception and network
forensics, where it is compulsory to save raw,
unmodified network packets as observed on the
network in order to show the evidence of network
communications.

· In security domains, security experts need to analyze
the network traffic to detect and analyze new network
threats that are not yet identified by existing tools.

· In high-frequency trading where network latencies and
communications must satisfy specified constraints, it is
required to keep a copy of network communications so
that the recorded traffic traces can be used during

troubleshooting or to settle a dispute.

Packet recording applications, often called packet-to-disk,
or packet loggers are able to capture live traffic and dump
unmodified packets persistently on disk. In order not to loose
any information during capture, they have to operate at line-
rate with any packet size and under every traffic mix.
Depending on the environment where such applications are
deployed, either all packets need to be recorded, or just those
matching specified filters. In a 10 Gbit link the data volume to
be stored for each second can exceed one Gigabyte. Loosing
packets at capture times is not acceptable as it will make the
recorded traces mostly useless, because they cannot be used
anymore to provide the evidence of a fact.

In addition to packet filters used during traffic capture,
network administrators and security officers need to extract
packets matching specific criteria from recorded traces. The
de-facto standard for packet filtering is the Berkeley Packet
Filter (BPF) [1], used in the popular libpcap [2] library. BPF
filters can be used both for filtering live traffic or to filter
packets from recorded traces. Such traces are usually saved in
pcap format, which is supported by the large majority of
network monitoring and security applications. Supporting the
BPF filter syntax does not necessarily imply that the same
filtering engine provided by the libpcap has to be used as the
BPF engine is known not to be very efficient [3]. As BPF is the
de-facto format for packet filters, pcap is the de-facto format
for file-based packet traces. A pcap file trace has a header that
contains information including the interface type where packets
have been captured, and the packet snaplen (i.e. which portion
of the packet has been actually stored on disk).

Fig. 1. Pcap File Dump Format

After this header, individual packets are dumped. Each
packet has a fixed-size header that contains the timestamp
corresponding to the time when the packet has been captured
and two lengths: the length of the packet on the wire and the
length of the data stored (i.e. the snaplen). The header does not
contain any indexing metadata but just packet lengths.
Therefore in order to read a specific packet it is necessary to

pcap File Header
Packet Header

Packet Payload

scan the file from the beginning until the required packet is
reached.

We define a packet recording application as a tool that is
able to i) dump packets to disk at line-rate in pcap format, and
ii) allow users to specify BPF capture filtering expressions. The
application has to come with some companion tools for
enabling network administrators to extract selected packets
from file traces in a reasonable amount of time, without the
need to sequentially scan the entire packet repository.

In this paper we present a novel packet recorder application
named n2disk, that we have developed from scratch by
exploiting our recent research work in the field of high-speed
packet capture analysis. The scope of this work is to
demonstrate that expensive packet recording appliances often
based on proprietary hardware (multi-1 Gbit recorders usually
cost 50-75k $, and 10 Gbit recorders over 100k $) can now be
built at a fraction of the cost, using the libraries and tools
developed by the authors on top of commodity hardware. In
contrast with most commercial packet recorders that offer as
default file format a proprietary format with pcap as second
option (often after proprietary-to-pcap offline file conversion),
n2disk natively supports BPF filters and pcap file format so
that the recorded traces can be used with a rich family of pcap-
based network applications.

The original contributions of this work are manyfold:
• n2disk is the first 10 Gbit packet recorder application

based on commodity hardware and open source software
capable to achieve line-rate.

• n2disk supports both live packet filtering at line rate and
packet filtering on traces using BPF filtering expressions.

• n2disk supports only open standards, such as the pcap file
format and BPF filters, without using any vendor-specific
format as main dump format from which to export pcap.

• n2disk is able to index packets at 10 Gbit line rate during
packet capture outperforming state of the art [4] indexing
techniques that can be used to post-process existing
recorder pcap files but are not suitable to indexing in real-
time at 10 Gbit rates.

• This work is royalty-free, not being based on any patented
technique for packet indexing and filtering, paving the
way to open, low-cost packet recording.

II. N2DISK ARCHITECTURE

n2disk comes in two flavors: single-threaded (ST) and
multi-thread (MT) packet consumers. The first version is
suitable for multi-Gbit networks, whereas the latter can be used
for 10 Gbit networks. As in n2disk every CPU cycle matters,
we decided to create two optimized application versions that
can be used depending on the capacity of the monitored
network links. Even if the multi-threaded version can be used
as drop-in replacement for the single-threaded version, we
believe that it is a good practice to avoid using too many
threads when possible, so that dual-core CPUs could be
sufficient for monitoring multi-Gbit links, while many-cores
for 10 Gbit links.

A. Single-Threaded n2disk Packet Processing Architecture
In the single-threaded version of n2disk, there is only one

packet consumer thread. The packet reader thread captures
packets from a single network interface, discards packets that

do not match the configured packet filter, if there is a filter
configured, and copies the remaining packets into memory
buffers allocated once when the application is started.

Fig. 2. Single-Threaded n2disk Packet Processing Architecture

These buffers are pre-filled with pcap file headers (see fig.
1) and captured packets are copied into the buffer together with
the corresponding pcap packet header. When a memory buffer
is full, the reader starts filling the next buffer and so on. The
idea is that the packet reader writes packets on a format that is
immediately ready to be dumped on disk. The task of writing
the memory buffers to disk is carried on by a second thread,
that is responsible to dump as fast as possible the available
memory buffers to disk. In order to limit the overhead of data
buffering introduced by the operating system primitives such
as write(), we have taken advantage of Direct I/O on operating
systems supporting it. This feature allows us to totally avoid
the overhead introduced by the write storage system, at the
price of using memory locations that are aligned at the page
size. This can be accomplished by allocating the shared
memory buffers with posix_memalign() instead of malloc(). In
order to have a fully lock-less design, the writer and reader
threads are fully decoupled. In fact instead of using wait()/
signal() for notifying the writer when a new buffer to dump is
available, the writer performs an active poll with 1 usec sleep
across checks, that grants low CPU load while avoiding
semaphores. Packets are either captured with the libpcap API
on non-Linux platforms (e.g. Apple OSX), or with PF_RING
[7] on Linux.

As discussed later on this paper, PF_RING enables line-rate
packet capture performance but it also allows specific features
of selected network adapters to be exploited:
• On 10 Gbit Intel 82599-based network adapters or Silicom

Director cards, it is possible to offload packets filtering to
hardware so that incoming packets that do not match the
specified criteria are dropped in hardware by the NIC itself
without reaching the PF_RING framework.

• On Intel 1 Gbit 82576/82580/i350 and Silicom 10 Gbit
precise time-stamping NICs, packet timestamps can be
provided with high-accuracy (~80 nanoseconds) by the
network adapter instead of using the system clock.

Users can specify packet filters at startup time using the BPF
format. Internally, n2disk represents the string-based filter with
an efficient structure that can be mapped to hardware if a
capable hardware-based filtering adapter is used, or evaluated
in software otherwise. During the design of our filtering engine
we have decided not to support the full BPF syntax as some
statements are rarely used in practice and also not usable to
filter at line-rate due to performance limitations. However,
users can decide to use full libpcap-powered BPF filters at the

Shared Memory Buffers

pcap
Writer

Persistent
Storage

Packet Capture,
Filter, Index,

Storage to Memory

cost of a higher filter processing overhead. The restrictions we
introduced in our reduced BPF implementation are:
• Each filtering sub expression enclosed by ‘()’ must

contain homogeneous operators and up to two nested
levels are supported. Example “(X and Y and (Z or W))” is
supported whereas “(X or (Y and (Z or W)))” is not.

• Some keywords such as gateway, frag, greater/less, decnet,
byte ranges in packet payload are not supported.

B. Multi-Threaded n2disk Packet Processing Architecture
At 10 Gbit, the single-threaded version of n2disk can sustain
wire-rate only on high-frequency CPUs (3.0 GHz and above)
and only with a limited amount of software-based packet
filtering rules. The reason is that the number of CPU cycles
required to handle every single packet is higher than the clock
cycles provided by a single core. Timestamping, for example,
is an expensive operation to be done in software. In fact,
computing timestamps in software requires about 80 clock
ticks that is an high value compared with 134 ticks available on
a 2 GHz core when processing traffic from a 10 Gbit interface
at line rate. Therefore, to enable high-speed packet capture on
platforms not supporting hardware timestamping, we have
created a multi-threaded n2disk version that overcomes this
bottleneck.

Fig. 3. Multi-Threaded n2disk Packet Processing Architecture

In this n2disk version, we delegates computationally intensive
activities to various threads, so that the overall computation
can be completed within the specified time constraints. This
design has been possible due to PF_RING’s libzero that is a
library built over PF_RING able to dispatch captured packets
in zero-copy to consumer threads while enabling threads to
defer their processing (i.e. threads must not process packets in
the same sequence as they have been received from the
network as it happens with most packet capture libraries). By
exploiting libzero, the packet capture thread passes incoming
packets to consumer threads in packet batches to improve
memory temporal and spatial locality (e.g. up to 32 packets to
the first consumer, then up to 32 packets to the second and so
on). In fact, policies such as round-robin that assign packets to
threads in circular order, would result in increased pressure on
the memory subsystem both in terms of page faults and cache
misses. If capture filters are not specified, the capture thread
queues pointers of captured packets to the consumer thread
queues without inspecting the packet itself. In contrast, if a
packet filter is defined, the capture thread must also parse the
packet and match it against the specified filter before passing it
to consumer threads. It is worth to remark that even though
modern NICs allow incoming packets to be balanced in
hardware to multiple RX queues via the RSS (Receive-Side

Scale) mechanism, we decided not to use this feature in n2disk.
This is because RSS would cause the packets to be saved in an
order that is different from the order in which packets are
received by the network adapter.
Consumer threads are responsible to copy packets into the
shared memory buffers, optionally index them by exploiting
the parse metadata produced by the capture thread. When there
are no capture filters configured, as no metadata has been made
available by the capture thread, the consumer thread must first
parse the packet before updating the index. Instead, when a
capture filter is defined, the capture thread is responsible to
both filter the packet and update the index.

C. Indexing PCAP Files
In addition to packet capture and dump to disk, n2disk can be
configured to create in real-time a packet index. The index
accelerates the extraction of selected packets matching a
specified filter on dumped files. For each .pcap file created by
n2disk, a companion index file is created. Its format is depicted
in fig. 4. During packet capture, indexes are stored on some
extra memory buffers allocated during application startup.
When indexes are used, for each packet memory buffer, n2disk
allocates a companion index memory buffer. The main index
design goals are:
• Ability to process traffic at 10 Gbit while dumping packets

on disk (i.e. no post-processing is required).
• Uncompressed index size independent of captured packet

types: we want to avoid that the index complexity and size
depends on captured packet type so that we can set an
upper-bound on the number of CPU cycles we need in
order to create the index. This is mandatory to guarantee
line rate packet capture under every traffic condition.

• Ability to use the index for immediately making a decision
if the companion .pcap file is likely to contain
(unfortunately bloom filters have limited false positive
rates) the searched packets.

• Have a full 5-tuple packet digest for each packet, so that
we can support complex filters and not just equality filters
as it happens with hash-based indexes such as blooms.

• Ability to extract matching packets by jumping to
matching-packet file offsets without sequentially scanning
the whole .pcap file.

Fig. 4. n2disk Packet Index File Format

To achieve these goals we have followed a pragmatic
approach. Instead of building real-indexes, such as the one
proposed in [4], which cannot be built at the data rates
observed in 10 Gbit networks due to computational constraints,
we have decided to combine a probabilistic index with an
index-less data-format to accelerate the data scanning. The
bloom filters are used to avoid scanning packet traces that do
not contains the result set. In contrast, the digest is used to

Packets Bloom Filter
Packet Digest

C
om

pr
es

se
d

D
at

a

accelerate the linear scanning by reducing the data volumes to
be scanned. In fact, the query processor has to linearly scan the
data digest instead of the entire pcap trace to find packet
matches. In practice, this two-layers indexing infrastructure can
be created at run-time more efficiently than real-indexes,
provides significant benefits at query time and does not poses
excessive requirements in terms of disk utilization.
To further reduce the index space, the index is stored in
compressed format using the LZF library [8] that in our tests
has shown an average compression ratio of 4:1 with peaks of
10:1. We decided to use this library because of its license
(BSD), because it is patent-free, and because offers a good
compression/decompression speed. The index is divided in two
parts that are compressed separately so that they can be
decompressed individually. The bloom filter [9] is made of four
statically sized different blooms:
• 2^16 bits long MAC addresses bitmap.
• 2^16 bits long TCP/UDP/SCTP ports bitmap.
• 2^16 bits long IPv4 address rounded to /24 bit-mask

bitmap. This bitmap is used to speed up searches on /24
bit-masked IP addresses.

• 2^32 bits long IPv4/v6 address bitmap.
For each incoming packet, n2disk:
• Parses the packet header up to layer-4.
• Sets the corresponding bits into each individual bloom.
• Fills a 5-tuple slot in the packet digest section of the index.

Packet digest slots have a fixed size regardless of the IP
version and port, and in addition to the 5-tuple they
contain the byte offset with respect to file begin of the
corresponding packet into the companion .pcap file.

D. Filtering Packets on Disk Using Indexes
During packet dumping, n2disk concurrently creates both
packet dumps and indexes on a user specified directory. The
directory contains X directories named with sequential indexes
(e.g. 1/, 2/, 3/...), each containing up to Y files whose name is
y.pcap and y.idx. Users configure the maximum size/number of
packets of each .pcap file, as well the values of X and Y. n2disk
sequentially dumps files on the specified directories starting
from the lowest up to the highest index. When the file X/
Y.pcap has been fully dumped, n2disk starts again from the
beginning by overwriting the first .pcap file. This file layout is
simple and easy for setting an upper limit on storage size, but it
has the drawback that it is not possible to search dumps based
on packet capture time. For this reason n2disk also maintains a
dump timeline that is basically a time-ordered directory tree
whose format is year/month/day/hour/tent-of-minutes.
Whenever a pcap/index file is created, n2disk adds a symbolic
link on the timeline, and if a pcap/index file is overwritten,
whose corresponding symbolic link is deleted from the
timeline. This simple solution allows tools to search for
selected packets by first selecting the set of directories
contained in the specified search time boundaries, and then
analyzing dumps.
n2disk comes with findPacketsWithTimeline, a companion tool
able to extract selected packets from timeline-ordered dump
files, and another tool named findPacketsWithIndex, for
indexing existing .pcap files that lack of an index file (e.g.
those that have not been produced by n2disk). The first tool
takes as input the timeline directory path, the begin/end packet

dump time, and a filtering expression defined on the n2disk
subset of BPF (e.g. “host 192.168.1.2 and port 80”). Such filter
is interpreted and the set of corresponding bits in the bloom
filter computed. Once the set of files and directories have been
selected under the timeline directory, the tool sequentially
scans such files to dump matching packets on a time-ordered
output .pcap file. For each index file, the tool decompresses
only the bloom filter section, and in case the computed filter
matches the bloom, the packet digest is decompressed and
sequentially scanned for match. Once a match is found, the
offset of the matching packet stored on the digest is used to
extract the packet from the corresponding .pcap without
sequentially reading the .pcap as libpcap does. In essence the
bloom is a simple solution for checking if a .pcap has potential
matching packets without sequentially scanning the packet
digest section and thus minimizing the search time.

Traffic generation and reply of existing .pcap files is
necessary for testing and troubleshooting applications,
reproducing network field conditions, and evaluating the
performance of network applications [16]. Hardware-based
traffic generators can reproduce traffic at line rate but they are
often unable to replay long .pcap files (often the limit is set to
256 packets). PF_RING DNA comes with a packet replay tool
named pfsend that allows .pcap traces to be replayed at the
original speed, at a specified speed, or at 10 Gbit line rate. This
tool first reads the .pcap file containing packets to send and
caches them in memory as reading them from disk during reply
would limit the transmission rate. Due to this design, the
maximum .pcap file size that can be replayed must not exceed
the available memory that corresponds to tenth GB on modern
systems, several order of magnitude better than what hardware-
based traffic generators can do.

III. N2DISK PERFORMANCE EVALUATION

We have evaluated the n2disk dump and packet filtering
performance using two different servers:
• A single processor low-end system (motherboard based on

chipset Intel 3420 using a 2.5 GHz quad-core with Hyper
Threading Xeon X3440). Each core provides around 168
CPU cycles/packet. This number can be obtained by
dividing the CPU clock by the number of packets per
second at 10 Gbit line rate (14.881 Mpps).

• A NUMA high-end system (motherboard based on chipset
Intel C602 powered by a dual 2.0 GHz eight core with HT
Xeon E5-2650, ~134 CPU cycles/packet). The system has
seven Intel 520 series SSDs in RAID 0 using a LSI
9260-16i controller configured with a XFS filesystem.
With rotating disks we can dump 10 Gbit line rate with at
least 8 x 10k RPM disks, although in our experience it is
better to use at least 10 disks.

TABLE I. N2DISK TOTAL CLOCK TICKS: SINGLE VS MULTITHREADED

Single Thread n2disk Multi-Thread n2disk

Dump w/o Indexing 149 153 (capture thread)
90 (each consumer thread)

Dump+Indexing 264 153 (capture thread)
210 (each consumer thread)

Table I highlights the number of CPU ticks required by the
single-threaded and multi-threaded versions of n2disk to
capture 64 bytes packets (worst case with respect to larger
packets that result in fewer pps), without considering the time
spent on file dump as it is a concurrent activity. This test
provides an optimistic estimate of the number of threads
required to dump at 10 Gbit line rate on both test systems. In
essence in order to both dump and index packets, the multi-
threaded n2disk has to be used because the amount of cycles-
per-packet required to index and capture is higher than the
cycles provided by a single core of both server platforms. For
pure packet dumping without indexing, even if the high-end
system has much more expensive CPUs than the low-end, the
number of CPU cycles available is lower and prevents it from
handling traffic at line rate on a 10 Gbit link. Table II shows
how the overall application performance is influenced by
packets filtering, indexing, and memory allocation.

TABLE II. STANDARD VS HUGE-PAGES MEMORY ALLOCATION
ON HIGH-END SYSTEM

Standard Memory
Allocation

2 MB Huge Pages

Dump w/o Indexing
on ST n2disk

5.83 Gbit
8.67 Mpps

6.30 Gbit
9.37 Mpps

Dump with Indexing
on ST n2disk with capture BPF filter

5.04 Gbit
7.49 Mpps

5.12 Gbit
7.62 Mpps

Dump w/o Indexing
on MT n2disk (2 consumer threads)

10.00 Gbit
14.88 Mpps

10.00 Gbit
14.88 Mpps

Dump with Indexing
on MT n2disk (5 consumer threads)

9.48 Gbit
14.10 Mpps

9.57 Gbit
14.23 Mpps

Note that when using indexing, although we use SSDs, we
need to create two files (the .pcap and the companion index)
instead of one, putting extra pressure on storage that eventually
causes drops as the writer thread has to spin. In order to
improve the performance we have experimented with page
sizes. In Linux in addition to the standard 4 KB memory pages,
it is possible to use something called huge-pages whose default
size is 2 MB. Their adoption offers some advantages compared
to the standard size:
• Large amounts of physical memory can be reserved for

memory allocation, that otherwise would fail especially
when physically contiguous memory is required.

• Reduced overhead: as the TLB (Translation Look aside
Buffer) contains per-page virtual to physical address
mappings, using a large amount of memory with the
default page size introduces a processing overhead for
managing the TLB entries.

The following graph shows how the number of threads
affects the performance of n2disk on the high-end system when
it is capturing and indexing packets. As shown in the table I,
packet indexing significantly affects the application
performance due to higher per packet processing costs.

2000

4000

6000

8000

10,000

12,000

14,000

Packet size (Bytes)

Pa
ck

et
 r

at
e

(K
pp

s)

64 128 256 512 1K

ST

Theoretical Max

MT-3

14,880 Theoretical Max Packet Rate

Capture Thread + 1 Thread

Capture Thread + 3 Thread

Single Capture Thread

MT-1
Capture Thread + 5 Thread

MT-5

Fig. 5. Scalability on High-End System: Dump With Packet Indexing

We have also evaluated the performance of n2disk BPF-
like packet filtering when compared to the BPF
implementation built into libpcap. The test confirms that
n2disk implementation is much more efficient with both simple
and complex filtering expressions. We believe this is a good
result compared to the restrictions introduced by BPF-like
filters that are basically limited to the inability to filter packets
based on payload content. Figure 6 shows the efficiency of
packet filtering with several examples of increasing
complexity, ranging from a simple “host 10.10.10.10 and port
80” filter (complexity 1) to “(host 10.10.10.10 or host
10.10.10.20 or host 10.10.10.30 or host 10.10.10.40) and (port
80 or port 3128 or port 443 or 8080)” (complexity 7).

 1 2 3 4 5 6 7

2000

4000

6000

8000

10,000

12,000

14,000

Filter Complexity

Pa
ck

et
 r

at
e

(K
pp

s)

512 1K

14,880

Standard BPF FIlter

Optimized BPF-Like Filter

Fig. 6. Standard BFP vs. n2disk BPF-like Implementation

In order to evaluate the efficiency of the extraction tools
when searching for packets we have dumped full packets on
files of 1 GB each. This size roughly corresponds to one
second of traffic at 10 Gbit line rate. Figure 7 reports the time
required to look for packets that are not present or present in
every .pcap file in a 1 to 16 TB-sized packet repository. In the
first case, the search only requires the bloom filters to be
accessed and it only takes around 20 seconds for a 16 Tb
packet archive. Instead searching for packets that exist on
every .pcap dump, which represents the worst case as we have
to open all indexes and .pcap files, can be completed within the
2 hours.

 2 4 8 16

1000

2000

4000

5000

6000

Dump size (TBytes)

D
ur

at
io

n
(S

ec
)

Filter matching no packet

Filter matching a few packets per file (worst case)

1

~6m

~1h 50m

Fig. 7. Packet Extraction Performance

These figures are significantly better than the results that
can be obtained when there are not indexes in place, as in case
of libpcap, which requires the sequential scanning of all .pcap
files. In conclusion, during packet capture/indexing, the
parallelism offered by NUMA systems is not easy to exploit
when packets are spread across nodes, as they have to cross the
processors interconnect (QPI on our platform) that has a
negative impact on the overall performance. High-end multi-
core processors, such as the 16 cores CPUs we have used, do
not represent a good option as well, because the amount of
CPU cycles per second provided is not sufficient to achieve
line rate on the single-threaded n2disk version. Considered that
with less than 8 cores n2disk can dump at line rate, we
recommend to use a CPU with fewer cores but higher clock
rate. As described in tests documented in our website [12], our
advice to obtain line rate packet to disk is to use a single
processor system (non NUMA) equipped with a high-
frequency CPU (3 GHz or more) that is almost one order of
magnitude cheaper than the high-end multi-core CPU used in
our tests.

IV. RELATED WORK

Packet recorder appliances have been available on the
market for long time [6]. However over the last few years the
emerging requirements of security and data retention markets
[13] ignited the development of efficient tools for packet
retrieval such as the Time Machine [11], Hyperion [14] and
pcapIndex [4]. Researchers have always focused on packet
indexing and retrieval [10] without tackling packet-to-disk
performance issues. Our work unique as it combines these two
aspects into a single application. This fact is very important, as
at 10 Gbit capturing packets and then indexing them off-line is
not efficient, introduces latency as indexed searches cannot be
performed until the index is built, and unnecessarily stresses
the storage system, which, in fact, would have to
simultaneously write new packets while reading the ones that
have to be indexed.

V. FUTURE WORK ITEMS

We are currently experimenting with Graphical Processing
Units to create real indexes and not just packet digests [15].
From our preliminary results, indexing packets in real-time
seems to be feasible with modern GPUs by passing them the
packet parsing metadata computed on the CPU. However,
before migrating to a heterogeneous architecture made of
CPUs and GPUs, we need to evaluate if the additional
complexity and costs introduced by the adoption of GPU lead
to significant packet search performance benefits compared to

the current indexing infrastructure.

VI. FINAL REMARKS

This paper has presented the design and implementation of
a 10 Gbit packet-to-disk application able to operate at line rate
with any packet size on commodity hardware. The evaluation
has demonstrated that it is nowadays possible to both capture
and index packet at line rate without experiencing packet losses
by using high-frequency CPUs (3 GHz or more). Additionally,
the evaluation has shown that packet indexes allow multi-TB
archives to be searched within a limited amount of time. The
implementation of BPF-like filters in n2disk demonstrated that
both capture and dump packet filters can conceal efficiently
with BPF expressiveness. To the best of our knowledge, our
work is the first combining 10 Gbit packet dump, indexing and
packet retrieval demonstrating that it is now possible to
perform all these activities simultaneously, at line rate in Gbit
links, and using just commodity hardware.

REFERENCES

[1] McCanne and V. Jacobson. The BSD Packet Filter: a New
Architecture for User-level Packet Capture, Proc. of the
USENIX Winter Conference, 1993.

[2] S. McCanne, C. Leres, and V. Jacobson, libpcap, Lawrence
Berkeley National Labs, http://www.tcpdump.com/, 1994.

[3] S. Ioannidis, xPF: packet filtering for low-cost network
monitoring, Proc. of High Performance Switching and Routing
Workshop, 2002.

[4] F. Fusco, X. Dimitropoulos, M. Vlachos, and L. Deri,
pcapIndex: An Index for Network Packet Traces with Legacy
Compatibility, ACM SIGCOMM Computer Communication
Review, 2012.

[5] S. Donnelly, DAG Packet Capture Performance, White Paper,
2006.

[6] Napatech Inc, A Guide to Building High Performance Capture
and Replay Appliances, White Paper, 2010.

[7] F. Fusco and L. Deri, High Speed Network Traffic Analysis with
Commodity Multi-Core Systems, Proc. of IMC 2010, 2010.

[8] M. Lehmann, LZF: An Extremely Fast/Free Compression/
Decompression-Method, http://liblzf.plan9.de/, 2008.

[9] B. Bloom, Space/time trade-offs in hash coding with allowable
errors, Communications of the ACM, July 1970.

[10] F. Fusco, M. P. Stoecklin, and M. Vlachos, Net-fli: on-the-fly
compression, archiving and indexing of streaming network
traffic, Proc. of VLDB Endow., 2010.

[11] G. Maier et al., Enriching network security analysis with time
travel, Proc. of ACM SIGCOMM 2008

[12] ntop, BYO10GPR: Build Your Own 10 Gbit Packet Recorder,
Technical Report, http://blog.ntop.org, 2012.

[13] C. R. Kalmanek et al., Darkstar: Using exploratory data mining
to raise the bar on network reliability and performance, Proc. of
7th Int. DRCN Workshop, 2009.

[14] P. J. Desnoyers and P. Shenoy, Hyperion: high volume stream
archival for retrospective querying, Proc. of the USENIX
Annual Technical Conference, 2007.

[15] A. Nottingham and B. Irwin, Parallel packet classification using
GPU co-processors, Proc. of SAICSIT '10, 2010.

[16] Napatech, Traffic Generation for the Mainstream Ethernet
Market, White Paper, April 2011.

