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Abstract—Capturing packets to  disk at line rate and with high 
precision packet timestamping is required whenever an evidence 
of  network communications has  to be provided. Typical 
applications of long-term network traffic repositories are 
network troubleshooting, analysis of  security violations, and 
analysis of  high-frequency trading communications. Appliances 
for 10 Gbit packet capture to disk are often based on dedicated 
network adapters, and therefore very expensive, making them 
usable only in specific domains.

This  paper covers  the design and implementation of  n2disk, a 
packet capture to disk application, capable of  dumping 10 Gbit 
traffic to disk using commodity hardware and open-source 
software. In addition to packet capture, n2disk is able to index 
the traffic at line-rate during capture, enabling users to 
efficiently search specific packets in network traffic dump files.

Index Terms—Traffic Dump to Disk, Packet Capture, 10 Gbit 
Traffic Monitoring.

I. INTRODUCTION AND BACKGROUND

Most network traffic monitoring and security applications 
such as IDS/IPS (Intrusion Detection/Prevention System) 
analyze the traffic as it passes by without storing it first. A 
persistent copy of the packet can be eventually stored on disk 
in sporadic conditions (e.g. in case a security flaw is detected). 
The copy can be triggered by specific network traffic, such as 
malformed packets to enable deeper analyses.  In some cases it 
is however mandatory to store the entire network traffic 
persistently on disk in order to create a repository that allows 
network administrators to travel back in time to analyze past 
network traffic conditions. There are many domains where 
such a network “time machine” is required:
· In the contexts where the network traffic cannot be 

processed in real-time because the analysis processes 
are computationally intensive and do not allow the 
traffic to be processed in the given time boundaries.

· In fields such as lawful interception and network 
forensics, where it is compulsory to save raw, 
unmodified network packets as observed on the 
network in order to show the evidence of network 
communications.

· In security domains, security experts need to analyze 
the network traffic to detect and analyze new network 
threats that are not yet identified by existing tools.

· In high-frequency trading where network latencies and 
communications must satisfy specified constraints, it is 
required to keep a copy of network communications so 
that the recorded traffic traces can be used during 

troubleshooting or to settle a dispute.

Packet recording applications, often called packet-to-disk, 
or packet loggers are able to capture live traffic and dump 
unmodified packets persistently on disk. In order not to loose 
any information during capture, they have to operate at line-
rate with any packet size and under every traffic mix. 
Depending on the environment where such applications are 
deployed, either all packets need to be recorded, or just those 
matching specified filters. In a 10 Gbit link the data volume to 
be stored for each second can exceed one Gigabyte. Loosing 
packets at capture times is not acceptable as it will make the 
recorded traces mostly useless, because they cannot be used 
anymore to provide the evidence of a fact.

In addition to packet filters used during traffic capture, 
network administrators and security officers need to extract 
packets matching specific criteria from recorded traces. The 
de-facto standard for packet filtering is the Berkeley Packet 
Filter (BPF) [1],  used in the popular libpcap [2] library. BPF 
filters can be used both for filtering live traffic or to filter 
packets from recorded traces. Such traces are usually saved in 
pcap format, which is supported by the large majority of 
network monitoring and security applications. Supporting the 
BPF filter syntax does not necessarily imply that the same 
filtering engine provided by the libpcap has to be used as the 
BPF engine is known not to be very efficient [3]. As BPF is the 
de-facto format for packet filters, pcap is the de-facto format 
for file-based packet traces.  A pcap file trace has a header that 
contains information including the interface type where packets 
have been captured, and the packet snaplen (i.e. which portion 
of the packet has been actually stored on disk).

Fig. 1. Pcap File Dump Format

After this header, individual packets are dumped. Each 
packet has a fixed-size header that contains the timestamp 
corresponding to the time when the packet has been captured 
and two lengths: the length of the packet on the wire and the 
length of the data stored (i.e. the snaplen). The header does not 
contain any indexing metadata but just packet lengths. 
Therefore in order to read a specific packet it is necessary to 

pcap File Header
Packet Header

Packet Payload



scan the file from the beginning until the required packet is 
reached.

We define a packet recording application as a tool that is 
able to i) dump packets to disk at line-rate in pcap format, and 
ii) allow users to specify BPF capture filtering expressions. The 
application has to come with some companion tools for 
enabling network administrators to extract selected packets 
from file traces in a reasonable amount of time,  without the 
need to sequentially scan the entire packet repository. 

In this paper we present a novel packet recorder application 
named n2disk, that we have developed from scratch by 
exploiting our recent research work in the field of high-speed 
packet capture analysis. The scope of this work is to 
demonstrate that expensive packet recording appliances often 
based on proprietary hardware (multi-1 Gbit recorders usually 
cost 50-75k $, and 10 Gbit recorders over 100k $) can now be 
built at a fraction of the cost,  using the libraries and tools 
developed by the authors on top of commodity hardware. In 
contrast with most commercial packet recorders that offer as 
default file format a proprietary format with pcap as second 
option (often after proprietary-to-pcap offline file conversion), 
n2disk natively supports BPF filters and pcap file format so 
that the recorded traces can be used with a rich family of pcap-
based network applications.

The original contributions of this work are manyfold:
• n2disk is the first 10 Gbit packet recorder application 

based on commodity hardware and open source software 
capable to achieve line-rate.

• n2disk supports both live packet filtering at line rate and 
packet filtering on traces using BPF filtering expressions.

• n2disk supports only open standards, such as the pcap file 
format and BPF filters, without using any vendor-specific 
format as main dump format from which to export pcap.

• n2disk is able to index packets at 10 Gbit line rate during 
packet capture outperforming state of the art [4] indexing 
techniques that can be used to post-process existing 
recorder pcap files but are not suitable to indexing in real-
time at 10 Gbit rates.

• This work is royalty-free,  not being based on any patented 
technique for packet indexing and filtering, paving the 
way to open, low-cost packet recording.

II. N2DISK ARCHITECTURE

n2disk comes in two flavors: single-threaded (ST) and 
multi-thread (MT) packet consumers. The first version is 
suitable for multi-Gbit networks, whereas the latter can be used 
for 10 Gbit networks. As in n2disk every CPU cycle matters, 
we decided to create two optimized application versions that 
can be used depending on the capacity of the monitored 
network links. Even if the multi-threaded version can be used 
as drop-in replacement for the single-threaded version, we 
believe that it is a good practice to avoid using too many 
threads when possible, so that dual-core CPUs could be 
sufficient for monitoring multi-Gbit links, while many-cores 
for 10 Gbit links.

A. Single-Threaded n2disk Packet Processing Architecture
In the single-threaded version of n2disk, there is only one 

packet consumer thread.  The packet reader thread captures 
packets from a single network interface, discards packets that 

do not match the configured packet filter, if there is a filter 
configured, and copies the remaining packets into memory 
buffers allocated once when the application is started.

Fig. 2. Single-Threaded n2disk Packet Processing Architecture

These buffers are pre-filled with pcap file headers (see fig. 
1) and captured packets are copied into the buffer together with 
the corresponding pcap packet header.  When a memory buffer 
is full, the reader starts filling the next buffer and so on. The 
idea is that the packet reader writes packets on a format that is 
immediately ready to be dumped on disk. The task of writing 
the memory buffers to disk is carried on by a second thread, 
that is responsible to dump as fast as possible the available 
memory buffers to disk. In order to limit the overhead of data 
buffering introduced by the operating system primitives such 
as write(), we have taken advantage of Direct I/O on operating 
systems supporting it. This feature allows us to totally avoid 
the overhead introduced by the write storage system, at the 
price of using memory locations that are aligned at the page 
size. This can be accomplished by allocating the shared 
memory buffers with posix_memalign() instead of malloc(). In 
order to have a fully lock-less design, the writer and reader 
threads are fully decoupled. In fact instead of using wait()/
signal() for notifying the writer when a new buffer to dump is 
available, the writer performs an active poll with 1 usec sleep 
across checks, that grants low CPU load while avoiding 
semaphores. Packets are either captured with the libpcap API 
on non-Linux platforms (e.g.  Apple OSX), or with PF_RING 
[7] on Linux.

As discussed later on this paper,  PF_RING enables line-rate 
packet capture performance but it also allows specific features 
of selected network adapters to be exploited:
• On 10 Gbit Intel 82599-based network adapters or Silicom 

Director cards, it is possible to offload packets filtering to 
hardware so that incoming packets that do not match the 
specified criteria are dropped in hardware by the NIC itself 
without reaching the PF_RING framework.

• On Intel 1 Gbit 82576/82580/i350 and Silicom 10 Gbit 
precise time-stamping NICs, packet timestamps can be 
provided with high-accuracy (~80 nanoseconds) by the 
network adapter instead of using the system clock.

Users can specify packet filters at startup time using the BPF 
format. Internally, n2disk represents the string-based filter with 
an efficient structure that can be mapped to hardware if a 
capable hardware-based filtering adapter is used, or evaluated 
in software otherwise. During the design of our filtering engine 
we have decided not to support the full BPF syntax as some 
statements are rarely used in practice and also not usable to 
filter at line-rate due to performance limitations. However, 
users can decide to use full libpcap-powered BPF filters at the 
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cost of a higher filter processing overhead.  The restrictions we 
introduced in our reduced BPF implementation are:
• Each filtering sub expression enclosed by ‘( )’  must 

contain homogeneous operators and up to two nested 
levels are supported. Example “(X and Y and (Z or W))” is 
supported whereas “(X or (Y and (Z or W)))” is not.

• Some keywords such as gateway, frag,  greater/less, decnet, 
byte ranges in packet payload are not supported.

B. Multi-Threaded n2disk Packet Processing Architecture
At 10 Gbit, the single-threaded version of n2disk can sustain 
wire-rate only on high-frequency CPUs (3.0 GHz and above) 
and only with a limited amount of software-based packet 
filtering rules. The reason is that the number of CPU cycles 
required to handle every single packet is higher than the clock 
cycles provided by a single core. Timestamping, for example, 
is an expensive operation to be done in software. In fact, 
computing timestamps in software requires about 80 clock 
ticks that is an high value compared with 134 ticks available on 
a 2 GHz core when processing traffic from a 10 Gbit interface 
at line rate. Therefore, to enable high-speed packet capture on 
platforms not supporting hardware timestamping, we have 
created a multi-threaded n2disk version that overcomes this 
bottleneck.

Fig. 3. Multi-Threaded n2disk Packet Processing Architecture

In this n2disk version, we delegates computationally intensive 
activities to various threads, so that the overall computation 
can be completed within the specified time constraints. This 
design has been possible due to PF_RING’s libzero that is a 
library built over PF_RING able to dispatch captured packets 
in zero-copy to consumer threads while enabling threads to 
defer their processing (i.e. threads must not process packets in 
the same sequence as they have been received from the 
network as it happens with most packet capture libraries). By 
exploiting libzero, the packet capture thread passes incoming 
packets to consumer threads in packet batches to improve 
memory temporal and spatial locality (e.g.  up to 32 packets to 
the first consumer, then up to 32 packets to the second and so 
on). In fact,  policies such as round-robin that assign packets to 
threads in circular order, would result in increased pressure on 
the memory subsystem both in terms of page faults and cache 
misses. If capture filters are not specified, the capture thread 
queues pointers of captured packets to the consumer thread 
queues without inspecting the packet itself.  In contrast,  if a 
packet filter is defined, the capture thread must also parse the 
packet and match it against the specified filter before passing it 
to consumer threads. It is worth to remark that even though 
modern NICs allow incoming packets to be balanced in 
hardware to multiple RX queues via the RSS (Receive-Side 

Scale) mechanism, we decided not to use this feature in n2disk. 
This is because RSS would cause the packets to be saved in an 
order that is different from the order in which packets are 
received by the network adapter.
Consumer threads are responsible to copy packets into the 
shared memory buffers, optionally index them by exploiting 
the parse metadata produced by the capture thread. When there 
are no capture filters configured, as no metadata has been made 
available by the capture thread,  the consumer thread must first 
parse the packet before updating the index. Instead, when a 
capture filter is defined, the capture thread is responsible to 
both filter the packet and update the index.

C. Indexing PCAP Files
In addition to packet capture and dump to disk, n2disk can be 
configured to create in real-time a packet index.  The index 
accelerates the extraction of selected packets matching a 
specified filter on dumped files. For each .pcap file created by 
n2disk, a companion index file is created. Its format is depicted 
in fig. 4. During packet capture, indexes are stored on some 
extra memory buffers allocated during application startup. 
When indexes are used, for each packet memory buffer, n2disk 
allocates a companion index memory buffer.  The main index 
design goals are:
• Ability to process traffic at 10 Gbit while dumping packets 

on disk (i.e. no post-processing is required).
• Uncompressed index size independent of captured packet 

types: we want to avoid that the index complexity and size 
depends on captured packet type so that we can set an 
upper-bound on the number of CPU cycles we need in 
order to create the index. This is mandatory to guarantee 
line rate packet capture under every traffic condition.

• Ability to use the index for immediately making a decision 
if the companion .pcap file is likely to contain 
(unfortunately bloom filters have limited false positive 
rates) the searched packets.

• Have a full 5-tuple packet digest for each packet, so that 
we can support complex filters and not just equality filters 
as it happens with hash-based indexes such as blooms.

• Ability to extract matching packets by jumping to 
matching-packet file offsets without sequentially scanning 
the whole .pcap file. 

Fig. 4. n2disk Packet Index File Format

To achieve these goals we have followed a pragmatic 
approach. Instead of building real-indexes,  such as the one 
proposed in [4], which cannot be built at the data rates 
observed in 10 Gbit networks due to computational constraints, 
we have decided to combine a probabilistic index with an 
index-less data-format to accelerate the data scanning. The 
bloom filters are used to avoid scanning packet traces that do 
not contains the result set. In contrast, the digest is used to 
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accelerate the linear scanning by reducing the data volumes to 
be scanned. In fact, the query processor has to linearly scan the 
data digest instead of the entire pcap trace to find packet 
matches. In practice, this two-layers indexing infrastructure can 
be created at run-time more efficiently than real-indexes, 
provides significant benefits at query time and does not poses 
excessive requirements in terms of disk utilization.
To further reduce the index space, the index is stored in 
compressed format using the LZF library [8] that in our tests 
has shown an average compression ratio of 4:1 with peaks of 
10:1.  We decided to use this library because of its license 
(BSD), because it is patent-free, and because offers a good 
compression/decompression speed. The index is divided in two 
parts that are compressed separately so that they can be 
decompressed individually.  The bloom filter [9] is made of four 
statically sized different blooms:
• 2^16 bits long MAC addresses bitmap.
• 2^16 bits long TCP/UDP/SCTP ports bitmap.
• 2^16 bits long IPv4 address rounded to /24 bit-mask 

bitmap. This bitmap is used to speed up searches on /24 
bit-masked IP addresses.

• 2^32 bits long IPv4/v6 address bitmap.
For each incoming packet, n2disk:
• Parses the packet header up to layer-4.
• Sets the corresponding bits into each individual bloom. 
• Fills a 5-tuple slot in the packet digest section of the index. 

Packet digest slots have a fixed size regardless of the IP 
version and port, and in addition to the 5-tuple they 
contain the byte offset with respect to file begin of the 
corresponding packet into the companion .pcap file.

D. Filtering Packets on Disk Using Indexes
During packet dumping, n2disk concurrently creates both 
packet dumps and indexes on a user specified directory. The 
directory contains X directories named with sequential indexes 
(e.g. 1/, 2/, 3/...), each containing up to Y files whose name is 
y.pcap and y.idx. Users configure the maximum size/number of 
packets of each .pcap file, as well the values of X and Y. n2disk 
sequentially dumps files on the specified directories starting 
from the lowest up to the highest index. When the file X/
Y.pcap has been fully dumped, n2disk starts again from the 
beginning by overwriting the first .pcap file.  This file layout is 
simple and easy for setting an upper limit on storage size, but it 
has the drawback that it is not possible to search dumps based 
on packet capture time. For this reason n2disk also maintains a 
dump timeline that is basically a time-ordered directory tree 
whose format is year/month/day/hour/tent-of-minutes. 
Whenever a pcap/index file is created, n2disk adds a symbolic 
link on the timeline, and if a pcap/index file is overwritten, 
whose corresponding symbolic link is deleted from the 
timeline. This simple solution allows tools to search for 
selected packets by first selecting the set of directories 
contained in the specified search time boundaries, and then 
analyzing dumps.
n2disk comes with findPacketsWithTimeline, a companion tool 
able to extract selected packets from timeline-ordered dump 
files, and another tool named findPacketsWithIndex, for 
indexing existing .pcap files that lack of an index file (e.g. 
those that have not been produced by n2disk).  The first tool 
takes as input the timeline directory path,  the begin/end packet 

dump time, and a filtering expression defined on the n2disk 
subset of BPF (e.g.  “host 192.168.1.2 and port 80”). Such filter 
is interpreted and the set of corresponding bits in the bloom 
filter computed. Once the set of files and directories have been 
selected under the timeline directory, the tool sequentially 
scans such files to dump matching packets on a time-ordered 
output .pcap file. For each index file, the tool decompresses 
only the bloom filter section, and in case the computed filter 
matches the bloom, the packet digest is decompressed and 
sequentially scanned for match. Once a match is found, the 
offset of the matching packet stored on the digest is used to 
extract the packet from the corresponding .pcap without 
sequentially reading the .pcap as libpcap does. In essence the 
bloom is a simple solution for checking if a .pcap has potential 
matching packets without sequentially scanning the packet 
digest section and thus minimizing the search time. 

Traffic generation and reply of existing .pcap files is 
necessary for testing and troubleshooting applications, 
reproducing network field conditions,  and evaluating the 
performance of network applications [16]. Hardware-based 
traffic generators can reproduce traffic at line rate but they are 
often unable to replay long .pcap files (often the limit is set to 
256 packets). PF_RING DNA comes with a packet replay tool 
named pfsend that allows .pcap traces to be replayed at the 
original speed, at a specified speed, or at 10 Gbit line rate. This 
tool first reads the .pcap file containing packets to send and 
caches them in memory as reading them from disk during reply 
would limit the transmission rate.  Due to this design,  the 
maximum .pcap file size that can be replayed must not exceed 
the available memory that corresponds to tenth GB on modern 
systems, several order of magnitude better than what hardware-
based traffic generators can do. 

III. N2DISK PERFORMANCE EVALUATION

We have evaluated the n2disk dump and packet filtering 
performance using two different servers:
• A single processor low-end system (motherboard based on 

chipset Intel 3420 using a 2.5 GHz quad-core with Hyper 
Threading Xeon X3440). Each core provides around 168 
CPU cycles/packet. This number can be obtained by 
dividing the CPU clock by the number of packets per 
second at 10 Gbit line rate (14.881 Mpps).

• A NUMA high-end system (motherboard based on chipset 
Intel C602 powered by a dual 2.0 GHz eight core with HT 
Xeon E5-2650, ~134 CPU cycles/packet). The system has 
seven Intel 520 series SSDs in RAID 0 using a LSI 
9260-16i controller configured with a XFS filesystem. 
With rotating disks we can dump 10 Gbit line rate with at 
least 8 x 10k RPM disks, although in our experience it is 
better to use at least 10 disks.

TABLE I. N2DISK TOTAL CLOCK TICKS: SINGLE VS MULTITHREADED

Single Thread n2disk Multi-Thread n2disk

Dump w/o Indexing 149 153 (capture thread)
90 (each consumer thread)

Dump+Indexing 264 153 (capture thread)
210 (each consumer thread)



Table I highlights the number of CPU ticks required by the 
single-threaded and multi-threaded versions of n2disk to 
capture 64 bytes packets (worst case with respect to larger 
packets that result in fewer pps), without considering the time 
spent on file dump as it is a concurrent activity. This test 
provides an optimistic estimate of the number of threads 
required to dump at 10 Gbit line rate on both test systems.  In 
essence in order to both dump and index packets, the multi-
threaded n2disk has to be used because the amount of cycles-
per-packet required to index and capture is higher than the 
cycles provided by a single core of both server platforms. For 
pure packet dumping without indexing, even if the high-end 
system has much more expensive CPUs than the low-end, the 
number of CPU cycles available is lower and prevents it from 
handling traffic at line rate on a 10 Gbit link. Table II shows 
how the overall application performance is influenced by 
packets filtering, indexing, and memory allocation. 

TABLE II. STANDARD VS HUGE-PAGES MEMORY ALLOCATION
ON HIGH-END SYSTEM

Standard Memory 
Allocation

2 MB Huge Pages

Dump w/o Indexing
on ST n2disk

5.83 Gbit 
8.67 Mpps

6.30 Gbit
9.37 Mpps

Dump with Indexing
on ST n2disk with capture BPF filter

5.04 Gbit
7.49 Mpps

5.12 Gbit
7.62 Mpps

Dump w/o Indexing
on MT n2disk (2 consumer threads)

10.00 Gbit
14.88 Mpps

10.00 Gbit
14.88 Mpps

Dump with Indexing
on MT n2disk (5 consumer threads)

9.48 Gbit
14.10 Mpps

9.57 Gbit
14.23 Mpps

Note that when using indexing, although we use SSDs, we 
need to create two files (the .pcap and the companion index) 
instead of one, putting extra pressure on storage that eventually 
causes drops as the writer thread has to spin. In order to 
improve the performance we have experimented with page 
sizes. In Linux in addition to the standard 4 KB memory pages, 
it is possible to use something called huge-pages whose default 
size is 2 MB. Their adoption offers some advantages compared 
to the standard size:
• Large amounts of physical memory can be reserved for 

memory allocation, that otherwise would fail especially 
when physically contiguous memory is required.

• Reduced overhead: as the TLB (Translation Look aside 
Buffer) contains per-page virtual to physical address 
mappings, using a large amount of memory with the 
default page size introduces a processing overhead for 
managing the TLB entries.

The following graph shows how the number of threads 
affects the performance of n2disk on the high-end system when 
it is capturing and indexing packets. As shown in the table I, 
packet indexing significantly affects the application 
performance due to higher per packet processing costs.
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We have also evaluated the performance of n2disk BPF-
like packet filtering when compared to the BPF 
implementation built into libpcap. The test confirms that 
n2disk implementation is much more efficient with both simple 
and complex filtering expressions. We believe this is a good 
result compared to the restrictions introduced by BPF-like 
filters that are basically limited to the inability to filter packets 
based on payload content.  Figure 6 shows the efficiency of 
packet filtering with several examples of increasing 
complexity, ranging from a simple “host 10.10.10.10 and port 
80” filter (complexity 1) to “(host 10.10.10.10 or host 
10.10.10.20 or host 10.10.10.30 or host 10.10.10.40) and (port 
80 or port 3128 or port 443 or 8080)” (complexity 7).
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In order to evaluate the efficiency of the extraction tools 
when searching for packets we have dumped full packets on 
files of 1 GB each. This size roughly corresponds to one 
second of traffic at 10 Gbit line rate. Figure 7 reports the time 
required to look for packets that are not present or present in 
every .pcap file in a 1 to 16 TB-sized packet repository. In the 
first case, the search only requires the bloom filters to be 
accessed and it only takes around 20 seconds for a 16 Tb 
packet archive. Instead searching for packets that exist on 
every .pcap dump, which represents the worst case as we have 
to open all indexes and .pcap files, can be completed within the 
2 hours.
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These figures are significantly better than the results that 
can be obtained when there are not indexes in place,  as in case 
of libpcap,  which requires the sequential scanning of all .pcap 
files. In conclusion, during packet capture/indexing,  the 
parallelism offered by NUMA systems is not easy to exploit 
when packets are spread across nodes, as they have to cross the 
processors interconnect (QPI on our platform) that has a 
negative impact on the overall performance. High-end multi-
core processors, such as the 16 cores CPUs we have used, do 
not represent a good option as well, because the amount of 
CPU cycles per second provided is not sufficient to achieve 
line rate on the single-threaded n2disk version. Considered that 
with less than 8 cores n2disk can dump at line rate, we 
recommend to use a CPU with fewer cores but higher clock 
rate. As described in tests documented in our website [12], our 
advice to obtain line rate packet to disk is to use a single 
processor system (non NUMA) equipped with a high-
frequency CPU (3 GHz or more) that is almost one order of 
magnitude cheaper than the high-end multi-core CPU used in 
our tests.

IV. RELATED WORK

Packet recorder appliances have been available on the 
market for long time [6]. However over the last few years the 
emerging requirements of security and data retention markets 
[13] ignited the development of efficient tools for packet 
retrieval such as the Time Machine [11], Hyperion [14] and 
pcapIndex [4]. Researchers have always focused on packet 
indexing and retrieval [10] without tackling packet-to-disk 
performance issues. Our work unique as it combines these two 
aspects into a single application. This fact is very important, as 
at 10 Gbit capturing packets and then indexing them off-line is 
not efficient, introduces latency as indexed searches cannot be 
performed until the index is built,  and unnecessarily stresses 
the storage system, which, in fact, would have to 
simultaneously write new packets while reading the ones that 
have to be indexed.

V. FUTURE WORK ITEMS

We are currently experimenting with Graphical Processing 
Units to create real indexes and not just packet digests [15]. 
From our preliminary results,  indexing packets in real-time 
seems to be feasible with modern GPUs by passing them the 
packet parsing metadata computed on the CPU. However, 
before migrating to a heterogeneous architecture made of 
CPUs and GPUs, we need to evaluate if the additional 
complexity and costs introduced by the adoption of GPU lead 
to significant packet search performance benefits compared to 

the current indexing infrastructure.

VI. FINAL REMARKS

This paper has presented the design and implementation of 
a 10 Gbit packet-to-disk application able to operate at line rate 
with any packet size on commodity hardware. The evaluation 
has demonstrated that it is nowadays possible to both capture 
and index packet at line rate without experiencing packet losses 
by using high-frequency CPUs (3 GHz or more). Additionally, 
the evaluation has shown that packet indexes allow multi-TB 
archives to be searched within a limited amount of time. The 
implementation of BPF-like filters in n2disk demonstrated that 
both capture and dump packet filters can conceal efficiently 
with BPF expressiveness. To the best of our knowledge, our 
work is the first combining 10 Gbit packet dump, indexing and 
packet retrieval demonstrating that it is now possible to 
perform all these activities simultaneously, at line rate in Gbit 
links, and using just commodity hardware.
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