
Advancements in Traffic Processing Using
Programmable Hardware Flow Offload

Luca Deri
ntop

Pisa, Italy
deri@ntop.org

Alfredo Cardigliano
ntop

Pisa, Italy
cardigliano@ntop.org

Francesco Fusco
IBM Research

Zürich, Switzerland
ffu@zurich.ibm.com

Abstract—The exponential growth of data traffic and the
increasing complexity of networked applications demand effective
solutions capable of passively inspecting and analysing the net-
work traffic for monitoring and security purposes. Implementing
network probes in software using general-purpose operating
systems have been made possible by advances in packet-capture
technologies, such as kernel-bypass frameworks, and by multi-
queue adapters designed to distribute the network workload
in multi-core processors. Modern SmartNICs, in addition, have
introduced stateful mechanisms to associate actions to network
flows such as forwarding packets or updating traffic statistics for
an individual flow.

In this paper, we describe our experience in exploiting those
functionalities in a modern network probe and we perform a
detailed study of the performance characteristics under different
scenarios. Compared to pure CPU-based solutions, SmartNICs
with flow-offload technologies provide substantial benefits when
implementing forwarding applications. However, the main lim-
itation of having to keep large flow tables in the host memory
remains largely unsolved for realistic monitoring and security
applications.

Index Terms—SmartNIC, acceleration, networking, monitor-
ing, flow table offload, FPGA.

I. INTRODUCTION

Network traffic monitoring and cybersecurity applications
play a critical role in safeguarding modern networks. The
complexity of the monitored traffic and the evolving nature of
security threats have made software-based probes attractive,
as they provide the flexibility required to promptly adapt to
new application layer protocols and attack vectors. Enabling
the implementation of software-based probes capable of just
inspecting traffic at a wire-rate using commodity hardware
and general-purpose operating systems has been a journey
requiring significant research and development efforts [5].
Packet-capture, which is the process of feeding an application
with packets captured from the wire, has been solved even
for very high-speed links using a combination of technologies
enabling i) to completely eliminate the processing overhead
from general-purpose operating systems (i.e. kernel-bypass)
and ii) to exploit the parallelism offered by recent multi-core
processors by splitting the traffic across cores using hardware-
assisted traffic balancing techniques, which allows to distribute
the network flows across cores using DMA engines (i.e.
multi-queue). Modern kernel bypass technologies such as
PF RING [11] and DPDK [12] can leverage multi-queue

network adapters and simplify the development of efficient
traffic processing applications. Monitoring applications can be
classified as totally passive or inline. Passive monitoring appli-
cations, such as Intrusion Detection Systems (IDS) receive a
copy of the traffic with the goal of analyzing it for monitoring
or security purposes. Inline applications, such as Intrusion
Prevention Systems (IPS) are deployed as bump-in-the-wire
[3], which means that for each packet in an ingress port, they
have to decide whether to send it to an egress port or to discard
it silently. Both passive and inline applications typically have
to maintain the state of each network flow, which can be
broadly defined as the sequence of packets exchanged between
two endpoints having some common attributes. The flow key
is computed using those attributes and it is used to uniquely
identify a network flow. A standard definition of a network
flow is given by protocols such as NetFlow/IPFIX [4], [6], [7]
where packet headers are part of the key, but often modern
network probes include application-layer information as part
of the key to perform different kinds of aggregations (e.g.,
the transaction id in a sequence of DNS packets). A flow
table is an in-memory data structure where the network probe
stores information, i.e., the metadata regarding the flows that
are currently active in the network.

In software-based network probes deployed in large net-
works flow tables can have hundreds of millions of entries and
each entry may need kilobytes of memory to store metadata,
especially when application layer protocols are dissected. The
metadata may include simple statistics about the packet stream
belonging to the flow such as the number of bytes and packets
ever transmitted, or can include information extracted from
application layer protocols using Deep Packet Inspection (DPI)
[8], such as the caller in a VoIP session. It is worth noting that
for application layer metadata, the probe rarely needs more
than just a few packets. The number of packets required to
extract the metadata depends on the protocol.

In a nutshell, maintaining those large tables may cause
substantial pressure on the host memory subsystem, both in
terms of cache misses and TLB misses, leading to dropped
packets and making the network probes victims of large DDoS
attacks. Therefore, reducing the number of accesses to the flow
table is an attractive opportunity for a hardware offload, as
one can shield the host memory using a dedicated memory
subsystem, reducing not only the number of memory copies

ar
X

iv
:2

40
7.

16
23

1v
1

 [
cs

.N
I]

 2
3

Ju
l 2

02
4

in the host but also the traffic on the PCIe bus. Modern
SmartNICs have introduced hardware-accelerated flow offload
mechanisms which can be seen as the next generational
step of acceleration technologies targeting monitoring and
cybersecurity probes implemented in software and deployed
on general-purpose operating systems.

In this paper, we describe our experience in exploiting mod-
ern SmartNICs to accelerate nProbe Cento [20] a commercial
Netflow/IPFIX probe providing application layer analysis and
using all the recent packet-capture technologies. In particular,
we showcase that Cento can be extended to support the
flow table offload mechanisms with very few code changes
required to synchronize the host flow table with the flow table
maintained in hardware. We perform a detailed performance
study comparing Cento with flow table offload enabled or
disabled in a realistic scenario. According to our study, a
flow table offload provides remarkable benefits for forwarding
applications when the number of active flows is limited but
does not solve the scalability problem observed when the host
is taxed by extremely large flow tables as the bottlenecks
become the host’s memory subsystem.

II. BACKGROUND

Kernel-bypass techniques [9] [10] have enabled the creation
of high-speed packet processing applications using commodity
network adapters by completely removing the inefficiencies
and packet copies derived by traversing the networking stack
of general-purpose operating systems. In a nutshell, kernel-
bypass frameworks, such as PF RING and DPDK, enable
user-space applications to exclusively control the network
adapters from the user space to reduce packet copies. The
reduction is obtained by configuring the DMA engines to
transfer packets directly from the on-device packet buffers
to memory accessible from the application itself in user-
space. In practice, kernel-bypass technologies enable line-rate
transmission and reception (TX/RX) up to 100 Gbit using
commodity network adapters and low-end processors.

Recent developments in cloud technologies, such as storage
disaggregation, fueled by the availability of high-speed links,
have increased the demand for programmability in modern
networking hardware. In the last few years, multiple technolo-
gies have been developed to make high-speed networks more
flexible and easier to control from software.

OpenFlow [13] is a network protocol that enables to control
of the forwarding plane of network devices which is imple-
mented by switches. An application can use OpenFlow to
manipulate packet forwarding tables (e.g. add/remove a packet
matching rule), hence it is possible to offload to the switch
the flow table: the switch can be programmed to forward
the application the traffic to analyze and the application can
modify the flow table using the OpenFlow protocol. While
conceptually possible, this solution is practically unfeasible
due to the latency introduced by having the flow table im-
plemented outside of the application [14], but also because
OpenFlow switches are usually limited to flow tables of 64k
entries, which is a small number even for gigabit networks.

Advanced acceleration technologies for cloud workloads,
such as encryption and compression, have been introduced
in modern SmartNICs [1], [2], [19]. Modern SmartNICs are
essentially network devices providing domain-specific offloads
and some form of programmability using domain-specific lan-
guages, such as P4 [15] or eBPF/XDP [16] or via dedicated on-
board general purpose processors (i.e. ARM/RISC-V). Among
the domain-specific offloads, some SmartNICs introduced the
technology to control a flow table in hardware, which can
be used to associate all the packets belonging to a specific
flow with some packet-processing actions, such as dropping
the packet or forwarding the packet to another link. In addition,
the hardware flow table, once configured, can keep track of
statistics of the flow, such as the number of packets seen. Flow
table accelerators are extremely attractive to develop moni-
toring/security applications, as they provide means to reduce
the amount of traffic that has to receive the host memory.
It is worth mentioning that this consideration is valid and
even more important when deploying monitoring applications
directly on the low-end on-board processors provided by some
SmartNICs.

To the best of our knowledge, the first SmartNIC able to
implement a hardware flow table has been the ANIC-Ku Series
manufactured by Accolade Technology (now part of Achronix
Semiconductor). This NIC was available at 10/40/100 Gbit
and implemented a hardware flow table size of a few million
flows. The device was able to accommodate up to 2 million
new flows/sec with a processing performance of 25 million
packets/sec with a cache size of 4 million entries, which
is sufficient for many applications. As of today, there are
two SmartNICs available on the market that implement a
hardware flow table: nVidia BlueField [17], [18] and Napatech
NT200A2. In our work, we use a Napatech NT200A2. The
next section describes in detail the functionalities offered by
the SmartNIC and how we exploit them to accelerate a modern
network probe which already uses all the latest kernel-bypass
technologies.

III. ARCHITECTURE

nProbe Cento [20] is a Netflow/IPFIX probe whose archi-
tecture is shown in Figure 1. Cento is optimised for 40/100
Gbit networks and designed to capture traffic from multiple
network adapters or RSS (Receive Side Scaling) queues using
zero-copy techniques [21]. Thanks to zero-copy, CPU usage
is reduced as the network adapter uses DMA to copy ingress
traffic to the host memory completely bypassing the operating
system kernel. Cento spawns a thread for each NIC/ingress
queue that implements a private flow cache. This design choice
promotes memory locality and prevents the need to use locking
mechanisms that would be necessary with a single application-
wide flow cache. To reduce the synchronization overheads,
the information collected for flows that are considered ex-
pired (e.g., due to timeout) is exported asynchronously and
in batches toward a queue that is shared among threads.

In addition to the metrics defined by NetFlow/IPFIX, Cento
can also report information extracted by dissecting application

layer protocols (e.g., the HTTP User-Agent) using nDPI [22],
an open-source Deep Packet Inspection framework developed
by the authors. When deployed on systems with multiple
network ports, Cento can be used as a passive bridge switching
traffic between interfaces according to rules specified in a
configuration file. Thanks to nDPI, the rules can include not
only header information such as IP and port numbers but also
application protocols. For instance, Cento can be configured
to bridge all traffic except NetFlix and YouTube or drop
everything except Spotify traffic.

Fl
ow

 Ta
bl

e

Fl
ow

 Ta
bl

e

Fl
ow

 Ta
bl

e

Fl
ow

 Ta
bl

e

RSS
Queue

RSS
Queue

RSS
Queue

RSS
Queue

Fl
ow

 E
gr

es
s

Qu
eu

e

Ingress
Traffic

Monitored
Data

Fig. 1. nProbe Cento Architecture Overview

The original Cento implementation is CPU-based and the
only acceleration provided by the NIC is zero-copy RX/TX.
In order to evaluate how flow-offload techniques could be
used in Cento, we have modified the application code to take
advantage of the hardware flow cache implemented by the
Napatech NT200AS SmartNIC. This NIC comes with 12 GB
of DDR4 memory and it uses a Xilinx XCVU5P FPGA. The
NIC firmware implements a stateful flow management [23]
that decodes every frame and performs flow classification and
the flow lookup in the flow table. The application can configure
the actions associated with a flow via rules. The SmartNIC
can, for example, forward flows to the application for further
processing and decide to transmit flows on one or more ports.
To enable the identification of specific network flows, the NIC
gives the application the possibility to associate a non-zero 64-
bit flow identifier, the flowId, to each specific network flow.
The flowid of zero corresponds to network flows that are seen
for the first time, or to unclassified flows. Therefore, once
the application sees a zero flowid, it creates the entry in the
host flow table, and it sets the flowid of the current network
flow to the memory address of the entry in the flow table.
When a network flow expires, the NIC card will expose to the
application the flowid (i.e., the pointer to the host hash flow
table), which is used to free the flow table entry.

As soon as the application has received enough packets for
a given flow (i.e. when DPI is completed and the application
protocol has been detected), it can set in the packet description
the action to perform on future flow packets so that such pack-
ets will be processed in hardware without further application
assistance. The SmartNIC on-board memory is used to buffer
ingress packets and also to maintain the flow table, i.e., the
stateful flow manager. The flow manager can use up to 10.5
GB of SmartNIC memory. This amount is sufficient to handle

140 million flows and buffer 130 ms of incoming traffic at
100 Gbit (wire rate). The hardware flow table implements a
cuckoo hash [24] with a learning rate of about 3.5 million new
flows/sec that degrades dramatically when more than 90% of
the flow table is in use. The application can configure the
flow duration of the hardware flow table, as well as flow
key attributes used to uniquely identify the flow (e.g. for
encapsulated traffic the application can specify the inner or
outer IP/port). This means that to operate correctly, Cento
must make sure that the software and hardware flow cache
are configured seamlessly. If necessary, the SmartNIC can
be queried for reading statistics about hardware offloaded
flows with a pass/drop configured action whose packets are no
longer received by the application as processed in hardware.
In Cento, we have decided not to use this technique but we
have configured the SmartNIC to deliver the application an
event whenever a flow is purged from the hardware flow table:
this guarantees that the hardware flow table flushes entries no
longer present in the hardware table hence to keep both tables
in sync. There are several reasons why it is necessary to keep
a flow table in software and one in hardware:

• The SmartNIC has limited memory capacity and a hard
limit on the maximum number of active flows. Flows
exceeding the capacity can be stored in the software flow
table.

• The software flow table can accommodate custom data
structures, which are usually required to perform deep
packet inspection.

• The hardware flow table does not allow to provision a
custom definition of the hash key, which can be required,
for example, to include fields that the NIC does not
natively support, such as application layer metadata (e.g.,
the DNS transaction id).

Extending Cento with the support of hardware flow tables
required limited changes (less than 200 lines of code) as
the existing software flow table is also used when exploiting
the hardware flow offload. In a nutshell, the changes are
required to maintain the state of the software flow table and
the hardware flow table synchronized, which means i) setting
the flow identifier (flowId) in the (hardware) flow descriptor,
and ii) reading expired flow events from the hardware flow
table.

As shown in Figure 2, with the flow table offload enabled,
the software processes the initial packets of every flow, until
the application protocol is identified by the DPI engine. As
the generated traffic contains random bytes, this represents the
worst-case scenario when DPI is used. This is because, with
real network traffic, nDPI detects the application protocol as
soon as one dissector matches the traffic, whereas in this case,
the DPI processing terminates until all dissectors do not find
a match in the traffic.

It is worth mentioning that even with the flow table offload,
the probe still has to manage the software flow table by
creating new flows and processing packets with the DPI
engine. For this reason, the main factor affecting the final

Hw Flow Table

Flow Manager Actions

SmartNIC

Sw Flow Table Actions nProbe

Flow Miss

Flow Hit

Pkt ForwardFlow Offload
Pa

ck
et

Ingress Traffic

Egress Traffic
(Optional)

Fig. 2. Packet Lifecycle with Flow Offload

performance is the number of new flows per second rather than
the ingress packet rate. This means that the software flow table,
necessary as DPI cannot be performed in hardware, indirectly
affects negatively the performance of the hardware flow table.

Another fact to consider when evaluating hardware flow
offload is the time it takes for the adapter to program a flow
tuple offload. As the flow creation rate increases getting close
to the flow learning limit of the adapter, the cost of hardware
flow programming affects the probe performance. For this
reason, Cento decouples packet processing and hardware flow
programming using a software queue which defers the flow
creation to a separate thread (which is mostly doing a passive
wait and using a low amount of CPU cycles), reducing the
impact of flow programming on the processing thread. In fact,
programming hardware flows in the processing thread reduces
the probe performance as it would have to passively wait until
the flow programming to complete.

In case DPI is disabled, theoretically the software flow hash
could be completely avoided as the network adapter through
offload can both process and account traffic completely in
hardware except for the first flow packet. Without a software
flow hash, the probe will set an offload rule per packet leading
to race conditions as, due to buffering in the SmartNIC, the
software probe can offload the same flow multiple times in
case of high-rate flows. As previously explained, programming
a flow offload takes some time (less than 10 microseconds per
rule) and this can become a bottleneck if performed for flows
that have been already offloaded.

The following section evaluates the application performance
in the case of CPU-only and hardware-offloaded flow tables.

IV. VALIDATION

A. Test Plant

The goal of this work has been to assess what benefits Cento
can achieve in terms of CPU utilization and packet loss when
relying on the flow offload capabilities offered by a modern
SmartNIC, under different traffic scenarios.

To validate our work we use a testbed made of two directly
connected servers, one used for traffic generation and the
other for traffic processing. On both servers, we have used
Napatech 100 Gbit network adapters connected with a DAC
(Direct Attach Cable). The system under test is powered by
an Intel Xeon Gold 6526Y with 128 GB of memory (8 x 16
GB DDR5 memory modules) using a Napatech NT200A02.

The traffic generator system is based on an Intel Xeon E-2136
with DDR4 memory and a Napatech NT100E3.

Considering a 100 Gbit link, the packet rate depends entirely
on the specific traffic patterns and utilization. However, we can
explore two reference points:

• Theoretical Maximum: considering the smallest possible
Ethernet frame, a 100 Gbps link can move up to 148.8
Million packets per second (worst case).

• Real-world scenarios: 100 Gigabit links in data centers
and campus networks usually show traffic ranging from
5 million to 10 million packets per second.

Traffic patterns vary significantly depending on the network
type (data center, enterprise, internet backbone) and user
base. Finding a universally accepted average flow count for
validating the work is difficult, however, according to our
experience with campus networks and Internet link analysis,
it is reasonable to consider a flow density (i.e. number of
concurrent active flows/sec) between 5K and 10K flows per
Gbps, this means up to 10 million active flows at 100 Gbit.
In terms of flow birth rate (i.e. the percentage of flows that
are created/terminated every second), we have used 10% as
a reasonable value according to our experience in monitoring
traffic on Internet links.

B. Adapter Under Test

The adapter used for the validation is a Napatech
NT200A02. This adapter is using PCIe Gen3, supporting up to
100 Gbps in and 100 Gbps out. The flow table offload support
on this adapter, also known as Flow Manager, has room for
140 million flows with a learning rate of up to 1 million flows
per second when using a single stream, and 3 million flows per
second maximum when using multiple streams. When the flow
table capacity is reached, unhandled packets are forwarded to
the host, where the software takes care of processing those
packets on the CPU as fallback.

C. Traffic Generator

For traffic generation, we have used a home-grown open-
source software application named pfsend that is more flexible
than a hardware traffic generator we had access to and that
was unable to generate flow traffic patterns needed in our
experiments. With this application, we can control:

• Number of active flows, to test the flow table capacity
and lookup time.

• Number of new flows per second, to test the flow learning
rate.

• Packet size, which affects the number of packets per
second.

• Traffic rate, in terms of bits per second.
This setup can generate 80 Gbps with 970-byte packets

(10 Mpps), or 60 Gbps with 60-byte packets (89 Mpps). The
number of active flows and new flows per second can be
fully controlled and combined. The goal of this validation
is to evaluate hardware flow offload techniques and position
them against software-only processing. For this reason, we

are focusing more on relative numbers (i.e. offload vs CPU-
only) rather than absolute traffic numbers that can vary signifi-
cantly in reality from network to network. The selected traffic
generation mode, with its flexibility in simulating different
traffic conditions being software-based and programmable, has
proved to be a good fit for this purpose.

V. RESULTS

Tests have been performed at the maximum traffic generator
rates, both in terms of packets per second (89 Mpps) and bit
rate (80 Gbps). The number of active flows and new flows per
second have been tuned to test the solution at different traffic
conditions:

• 10K active flows, 1K new flows/sec.
• 100K active flows, 10K new flows/sec.
• 1M active flows, 100K new flows/sec.
• 10M active flows, 1M new flows/sec.
• 20M active flows, 2M new flows/sec.
New flows are created data constant pace up to the max-

imum value. Flows are not preallocated in memory as many
tools do (e.g. Suricata IDS [25]) in order to take into account
the allocation overheard. To demonstrate the effectiveness of
flow offload techniques, we report results in both passive and
inline scenarios with/without the use of DPI. The generated
traffic contains random data that is the worst case for DPI as
all the protocol dissectors need to be verified, contrary to real
traffic where it is likely that a dissector will match the traffic
thus reducing the DPI processing time.

A. Passive Processing

In this test, we have evaluated the performance of Cento
running in passive mode, i.e., when the traffic is analyzed
and not retransmitted. The captured traffic is processed and
analyzed with nDPI to extract application protocol (L7) fields
and metadata. RSS (configured on the 5-tuple) is used to
distribute in hardware the load among the CPU cores available
(16 in our case). In our synthetically generated traffic, RSS is
able to evenly balance the traffic across cores.

We are interested in evaluating the (average) CPU utilization
and the percentages of dropped packets with an without
enabling the hardware flow offloading under different traffic
conditions in terms of packets per seconds and number of
distinct flows. Figure 3 reports the results for the maximum
traffic rate that can be generated (80 Gbps), while Figure 4
highlights the results for the maximum number of packets per
second (89 Mpps) which corresponds to 60 Gbps. At 80Gbps
(Figure 3), the packet loss is zero in all the situations, but
the hardware offload allows to reduce the CPU load. More
interesting are the results when the packet rate is higher
(Figure 4) where by exploiting the hardware offload, the packet
drop can be eliminated for up to 1 million distinct flows and
reduced by almost 25% in the case of 10 million distinct flows.

In Table I we evaluate the overhead introduced when
enabling deep packet inspection (trough nDPI) in terms of
CPU load and packet drops, and compare it with inline mode
as reported in Figure 5. As expected, the use of DPI slightly

Active Flows

Fig. 3. Inline vs Passive mode at 10 Mpps (80 Gbps) with DPI enabled.
Cento does not loose packets even without flow offloading: with offloading
enabled the CPU utilization decreases significantly.

Active Flows

Fig. 4. Inline vs Passive mode at 89 Mpps (60 Gbps) with DPI enabled.
Hardware offloading eliminates packet loss at 1 Million flows and reduces it
by 25% with 10 Million flows. Offloading reduces the packet drop to zero at
1 Million distinct flows

increases the CPU load but it does not changes significantly
the results when not in use. With nDPI enabled, the memory
requirement per flow is approximately 1 kilobyte: this memory
is used to store the flow protocol dissection state and protocol
metadata (e.g. TLS certificate information or HTTP URL). It
is worth to remark, that this memory is only required while
performing deep packet inspection and can be safely freed as
soon as the application protocol is detected and the application
layer fields extracted. Our results highlight that, as expected,
enabling nDPI corresponds to an increase in both CPU load
and packet drop. Enabling the hardware flow offload reduces
the packet loss to zero for up to 5 million active flows.

B. Inline Processing

In the inline configuration, the software probe receives
traffic on port A, processes and forwards it to port B, and
vice versa. This is a typical scenario where we need both a
probe and traffic police (e.g. pass all traffic except NetFlix and
WhatsApp flows). As shown by the results, when the packet
rate is reasonably low (average rate for a campus network),
Cento can process and forward traffic with no packet loss,
and the measured CPU load in Figure 4 would let us think
that there is room for handling more traffic, both without
and with offload. However, without the offload, the PCIe bus
(the adapter being used supports PCIe Gen 3) is already fully
utilized and this is the maximum performance the software-
only configuration can achieve (100 Gbps in and 100 Gbps
out). Instead, with the offload in place, most of the traffic is
forwarded by the adapter itself, and only a fraction of it is

TABLE I
DPI PROCESSING OVERHEAD IN PASSIVE MODE: 10 MPPS (80 GBPS)

Metric nDPI Offload Number of Active Flows
10K 100K 1M 10M 20M

CPU
load

✓ - 35% 58% 100% 100% 100%
- - 31% 36% 87% 100% 100%
✓ ✓ 1% 23% 82% 95% 100%
- ✓ 1% 17% 46% 98% 100%

Pkt
drop

✓ - 0% 0% 24% 72% 93%
- - 0% 0% 0% 40% 63%
✓ ✓ 0% 0% 0% 46% 82%
- ✓ 0% 0% 0% 11% 37%

Active Flows

CP
U

Lo
ad

 (%
)

Fig. 5. DPI Overhead in Inline mode at 10 Mpps (80 Gbps)

moved through the PCIe bus. This would allow us to scale
and be able to process bidirectional traffic in case of a bridge
configuration (e.g. for Layer-7 Traffic Policing), or additional
network segments using more ports even on the same adapter.

VI. CONCLUSIONS

Modern software-based passive monitoring systems are re-
quired to inspect and analyze complex traffic from very high-
speed network links. While the flexibility of pure software so-
lutions is undeniable, hardware offloads have been introduced
to enable software-based probes to scale to hundreds of gigabit
links and above. In this paper, we describe our experience in
exploiting the recent flow table offload capabilities offered by
modern SmartNICs which, in a nutshell, offer the possibility
to perform forwarding actions and to keep traffic statistics of
network flows directly in hardware.

We showcase that exploiting flow offloads requires limited
changes while offering substantial performance benefits in
forwarding applications especially when the number of active
flows is relatively small. However, as we show in our evalu-
ation, flow offloads do not represent a solution for the worst-
case scenario for software-based probes, which is, when the
performance is limited by the host’s memory subsystem.

VII. FUTURE WORK ITEMS

Due to space constraints the paper does not include all
the results. However, we share with the community a full
repository1 containing the complete test results and the exact
commands used in the experiments. This way researchers can
repeat our experiments under different traffic conditions.

1https://github.com/ntop/flow-hw-offload-paper

As a future work item, we would like to improve the
implementation of the host hash table that is a performance
bottleneck as shown by our experiments. Furthermore we
would like to extend our work to other SmartNICs models in
order to compare the features provided by different vendors.

REFERENCES

[1] Y. Feng, S. Panda, S.G. Kulkarni, K.K. Ramakrishnan, N. Duffield, “A
smartnic-accelerated monitoring platform for in-band network teleme-
try”, 2020 IEEE International Symposium on Local and Metropolitan
Area, 2020.

[2] G. Lettieri, et al., “SmartNIC-Accelerated Stream Processing Analytics“,
2023 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). IEEE, 2023.

[3] T. Newe, et al. “Efficient and High Speed FPGA Bump in the Wire
Implementation for Data Integrity and Confidentiality Services in the
IoT“, in Sensors for Everyday Life: Healthcare Settings (2017), ISBN
978-3-319-47319-2, 259-285.

[4] L. Bingdong, et al.“A survey of network flow applications“ Journal of
Network and Computer Applications 36.2 (2013): 567-581.

[5] N. Kishore, et al.“Survey on software solution for high performance
packet processing“, Distributed Computing and Optimization Tech-
niques: Select Proceedings of ICDCOT 2021. Singapore: Springer
Nature Singapore, 2022. 819-829.

[6] B. Claise, “Cisco systems netflow services export version 9“, RFC 3954.
2004.

[7] B. Trammell, and E. Boschi, “An introduction to IP flow information
export (IPFIX)“, IEEE Communications Magazine 49.4 (2011): 89-95.

[8] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent compar-
ison of popular DPI tools for traffic classification“, Computer Networks
76 (2015): 75-89.

[9] R. Chen, and G. Sun, “A survey of kernel-bypass techniques in network
stack“‘, Proceedings of the 2018 2nd International Conference on
Computer Science and Artificial Intelligence. 2018.

[10] M. Majkowski, “Kernel bypass“, The Cloudflare Blog,
https://blog.cloudflare.com/kernel-bypass, 2015.

[11] F. Fusco, and L. Deri, “High speed network traffic analysis with com-
modity multi-core systems“, Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. 2010.

[12] Intel, DPDK Data Plane Development Kit, http://www.dpdk.org/, 2014.
[13] N. McKeown, et al. “OpenFlow: enabling innovation in campus net-

works“, ACM SIGCOMM computer communication review 38.2 (2008):
69-74.

[14] M. Kuźniar, “Methodology, measurement and analysis of flow table up-
date characteristics in hardware openflow switches“, Computer Networks
136 (2018): 22-36.

[15] A. Seibulescu, and M. Baldi. “Leveraging p4 flexibility to expose target-
specific features“. Proceedings of the 3rd P4 Workshop in Europe. 2020.

[16] M. Bonola, et al., “Faster Software Packet Processing on FPGA NICs
with eBPF Program Warping“, 2022 USENIX Annual Technical Con-
ference (USENIX ATC 22). 2022.

[17] J. Liu, C. Maltzahn, C. Ulmer, M.L. Curry, “Performance characteristics
of the Bluefield-2 Smartnic“, arXiv preprint arXiv:2105.06619, 2021.

[18] S. Karamati, J. Young, T. Conte, K.S. Hemmert, R. Grant, C. Hughes,
R. Vudu, “Computational Offload with BlueField Smart NICs”, Sandia
Report SAND2021-13031, 2021

[19] A. Zulfiqar, et al., “The Slow Path Needs an Accelerator Too¡‘, ACM
SIGCOMM Computer Communication Review 53.1 (2023): 38-47.

[20] L. Deri, “Towards 100-Gbit Flow-Based Network Monitoring“, FloCon
Conference. 2016.

[21] V. Moreno, et al., “Commodity packet capture engines: Tutorial, cook-
book and applicability“, IEEE Communications Surveys & Tutorials
17.3 (2015): 1364-1390.

[22] L. Deri, et al., “nDPI: Open-source high-speed deep packet inspection“,
2014 International Wireless Communications and Mobile Computing
Conference (IWCMC). IEEE, 2014.

[23] Napatech A/S, “Stateful Flow Management“,
https://docs.napatech.com/r/Stateful-Flow-Management, 2024.

[24] R. Pagh, and F. Friche Rodler, “Cuckoo hashing“, Journal of Algorithms
51.2 (2004): 122-144.

[25] Suricata, “https://suricata.io“

http://www.dpdk.org/
http://arxiv.org/abs/2105.06619

	Introduction
	Background
	Architecture
	Validation
	Test Plant
	Adapter Under Test
	Traffic Generator

	Results
	Passive Processing
	Inline Processing

	Conclusions
	Future Work Items
	References

