
MicroCloud-based Network Traffic Monitoring
Luca Deri

ntop / IIT-CNR
Pisa, Italy

deri@ntop.org, luca.deri@iit.cnr.it

Francesco Fusco
 ETH

 Zürich, Switzerland
 fusco@tik.ee.ethz.ch

Abstract— Monitoring of large distributed networks requires
the deployment of several probes at different network locations
where traffic to be analyzed is flowing. Each probe analyzes the
traffic and sends the monitoring data toward a centralized
management station. This semi-centralized architecture based on
the push model is extensively adopted to analyze large
distributed networks. However, this architecture presents serious
limitations when used to provide real-time traffic monitoring and
correlation capabilities across all probes.

This paper describes a novel architecture that addresses the
problem of real-time traffic correlation and alerting, by
exploiting modern cloud infrastructures. In particular, we
propose the adoption of a small-sized cloud to provide a
consistent data space that is: i) shared among distinct probes to
selectively store monitoring data, and, ii) accessible by external
applications to retrieve selected information. We validate our
architecture on large distributed networks in the context of DNS
traffic monitoring.

Index Terms—Distributed traffic monitoring, cloud computing.

I. INTRODUCTION

NetFlow [1] and IPFIX are the de-facto standard
technologies used to monitor network traffic in a passive
manner. In the context of network flow monitoring, a flow [2]
is defined as a set of IP packets passing through an observation
point during a certain time interval, sharing common properties
including, but not limited to, ingress/egress interface, protocol,
source/destination IP addresses and ports. Flows have a
specified lifetime that begins when the first flow packet is
received at the observation point, and ends due to timeout or
maximum duration. A flow-enabled network probe is deployed
in a vantage point to aggregate packets into flows and to
produce flow records, which carry statistics about each
analyzed network flow. Flow records corresponding to expired
network flows are exported by the probe toward a flow
collector using a standardized flow export protocol such as
NetFlow or IPFIX. The flow export protocol defines the flow-
record encoding format as well as the transport protocol (e.g.,
UDP or SCTP). The flow collector is an application executed
on a centralized management station that filters, aggregates and
eventually dumps the received flow-records in a persistent
database. The standard flow-monitoring paradigm is based on a
strict push model. The collector passively listens for flow
records originated by one or more probes and processes them
without any interaction with the sources. Each network probe
is totally independent from the rest of the network monitoring
infrastructure.

Existing network infrastructures come with built-in flow-
monitoring functionalities. In fact, network devices such as
switches and routers commercialized by major industry players
come with embedded network probes providing some form of

flow-based monitoring capabilities. These embedded
implementations, which usually provide limited performance
and analysis capabilities, have made flow-monitoring the de-
facto monitoring paradigm.

Standalone software-based network probes [3], [4] have
been introduced to overcome the limitations of embedded
probes. They are more flexible and easier to extend than
embedded probes and can be easily deployed on standard
servers that receive a copy of the network traffic to be analyzed
through traffic mirroring ports or network tap devices. In
practice, software-based probes have drastically changed the
way of monitoring network using a passive approach. In fact,
software-based probes have extended the concept of flow
record, which is usually limited to packet header fields onto
embedded implementations, to the application domain making
possible to analyze networking services, such as DNS, VoIP
and the web from the application layer point of view. This
means that software-based probes have allowed moving the
network monitoring task from network-centric to a service and
user-centric task.

By broadening the scope of flow monitoring to applications
and services, software-probes have made the limitations of the
push paradigm more pronounced. The main problem of a strict
push model in the context of flow-monitoring is that i) the
centralized management station can only have a deferred view
of the network, because the probes autonomously decide when
to emit flow-records, and, ii) network probes analyze the traffic
independently from each other without having the possibility to
share information. These limitations prevents timely
correlations between network flows originated from distinct
network probes and belonging to a single application-layer
session to be performed (e.g., correlate signaling and audio
traffic in a VoIP session).

In this paper, we highlight the severe limitations that a strict
push-model introduces in the context of service oriented
network monitoring in large and high-speed networks and we
describe practical network monitoring use-cases where the
model manifest its limitations. Then, we describe a distributed
network monitoring architecture that overcomes these
limitations by augmenting the push-model with an publish-
subscribe mechanism. Our architecture is, in fact, based on a
distributed knowledge databased that i) is accessible by every
network probe and network collector, and, ii) keeps timely
sensitive information for a configurable amount of time. The
knowledge database, implemented using modern key-value
stores, can be eventually distributed across network nodes to
make the system both scalable and resilient.

II. BACKGROUND AND MOTIVATION

Flow correlation is the process of clustering semantically
related flow records. For example, correlation is required to
associate flow-records corresponding to the two traffic
directions (i.e., IP source-to-destination and destination-to-
source) that are often analyzed by distinct network-probes due
to asymmetric IP routing, MPLS, layer 2/3 VPNs, or traffic
balancers. In a flow-monitoring architecture based on standard
NetFlow/IPFIX technologies, flow correlations can only be
performed by the collector and are usually implemented as
queries over the database back-end storing the entire flow-
record stream. This way of performing correlations presents
two main shortcomings: i) the storage backend is constantly
taxed with periodic queries, and, ii) the correlations can only
be computed when the flow-records are received by the
collector making the architecture unsuitable for real-time
monitoring.

Software-based probes running of commodity hardware
have replaced embedded network probes primarily because
they provide the flexibility and extensibility required to
analyze modern network traffic flowing on 10 Gbit links using
a service and user-centric monitoring approach. In fact, thanks
to recent academic and industrial research [5], [6], [7] they are
able to process packets at line-rate in 10 Gbit links and even to
perform traffic analyses up to the application protocol by
means of Deep Packet Inspection (DPI) [8]. Additionally and
in contrast with probes embedded into existing network
devices, software-based probes provide the extensibility
required to support emerging encapsulation protocols such as
Generic Route Encapsulation (GRE), and Mobile IP. These
encapsulations techniques have become widely used in 10 Gbit
links as they are commonly used as backbone links to
consolidate traffic originated by heterogeneous networks.

In summary, software based probes made current flow-
monitoring architecture more flexible, capable of supporting a
large number of encapsulation protocols and of performing
complex application level traffic analyses. However, the
replacement of embedded probes with standalone probes do
not enable real-time analysis and low latency correlations,
which are extremely important especially when analyzing
networked services from the application protocol point of view.
Flow-correlation is required, for example, in the context of
Voice over IP (VoIP) traffic analysis, where flows-records
corresponding the signaling traffic have to be correlated with
the corresponding media flows to associate call quality with
VoIP peers. Similar correlation is desirable on networks where
users are identified using protocols such as Radius (RFC
2865), so that flows can be automatically associated with users
that authenticated to the network. DNS and SNMP flow
analysis also requires the probe to handle the sub-flow
identifier such as DNS transaction identifiers and SNMP
request identifiers.

In this work we propose a novel architecture that unlike the
standard flow-monitoring architecture can enable low-latency
aggregations and real-time monitoring. At the core of our
architecture there is a distributed knowledge-database called
MicroCloud that contains updated network monitoring
information. Our architecture is based on a collaborative
model: each probe enrich the database with up-to-date
monitoring information that is quickly available to the other

architecture components to correlate flows together and to
associate traffic with the originating user. This architecture
overcomes a limitation of many monitoring tools that are IP/
MAC address centric instead of user-centric: users think in
terms of services and identities, whereas IP and MAC
addresses are intermediate low-level information used by
computer to communicate.

III. MICROCLOUD MONITORING ARCHITECTURE

Our MicroCloud-based network monitoring architecture is
depicted in Figure 1. It is composed by network probes based
on nProbe [3], an open-source NetFlow/IPFIX probe written
by the authors and by a MicroCloud consisting of one or more
nodes. Each MicroCloud node, which is part of a distributed
knowledge database, runs an instance of a key-value store.
Network probes can emit flow records related to the analyzed
traffic toward a centralized management station or update the
knowledge database by setting keys in the cloud nodes.
Monitoring applications can access the monitoring information
available both in probes and cloud nodes using an unified
interface, which allows to subscribe to specific events or to
retrieve information using a polling mechanism.

Cloud Node
(redis)

Cloud Node
(redis)

Cloud Node
(redis)

Cloud Get/Put
Cloud Get/Put

n
nProbe

n
nProbe

n
nProbe

n
nProbe

n
nProbe

n
nProbe

Cloud Get/Put

Cloud Get/Put

MicroCloud

Monitoring Application

Cloud Subscribe

Cloud Get

Fig. 1. MicroCloud Architecture

A. The network probes
The core of the monitoring infrastructure is based on

nProbe, which is an advanced network probe capable of
analyzing traffic, classifying it into flows, and emitting the
corresponding flow-records according to the user-specified
template, i.e. nProbe supports flexible NetFlow in the Cisco
parlance. nProbe leverages a Deep Packet Inspection (DPI)
library named nDPI (http://www.ntop.org/products/ndpi/) to
recognize more than 140 application layer protocols including
Skype, BitTorrent, WebEx, Twitter and Facebook. Additionally,
we have made nProbe capable of dissecting traffic

encapsulated in commonly used encapsulation protocols.
nProbe is extensible by means of plugins. Nowadays, nProbe
comes with plugins for analyzing email traffic (SMTP, IMAP,
and POP3), database traffic (MySQL and Oracle) and HTTP
traffic. Plugins extract from network flows application-specific
metadata such as URL and return code in the case of the HTTP
plugin, with the purpose of providing a rich monitoring
experience. For example, nProbe can report the request service
time, i.e. the application delay and network latency for each
URL so that network administrators do not have aggregate
performance values, but rather fine-grained information
extremely useful to pinpoint specific performance issues.

However, by using a standardized monitoring architecture
based on NetFlow/IPFIX, the rich set of traffic monitoring
information that nProbe can derive by dissecting live traffic
can only be visible to network administrator when flow records
expires. For example, in the context of HTTP traffic
monitoring, an URL would be available only when the
corresponding network connection is terminated, or when a
maximum timeout has elapsed.

B. MicroCloud Nodes
MicroCloud nodes are database nodes where network

probes can store time sensitive monitoring information for a
configurable amount of time. MicroCloud nodes have to
sustain high insertion rates and yet provide low response times
when queried from monitoring applications. Modern databases
implementing the key-value store paradigm represent a good
option to achieve the goal as they are known to provide higher
insertion rates than commonly used relational databases trading
query expressivity for performance. Data stored in the cloud is
uniquely identified by a key. Network probes update the
knowledge database by inserting key-value pairs. After
evaluating possible key-value store alternatives we decided to
built our architecture on top of the key-value store called Redis
(http://www.redis.io) for the following reasons: i) it provide
persistence, so that data is preserved across restarts as on
standard databases, ii) it natively supports the publish/
subscribe paradigm, so that cloud participants can subscribe to
have information about relevant monitoring events, iii) it can
be accessed with many languages and uses a simple client-
server protocol. Monitoring applications can access the this
information by querying for specific keys. In Redis, the list of
available keys can be retrieved using patterns. For example, the
command KEYS ip.192.168.* can be used to retrieve a list of
keys starting with the specified prefix. To exploit this
functionality we organize the information hierarchically (i.e.,
as multiple trees). Within each MicroCloud node there are
many distinct groups (or trees):

• MAC, IP, VLAN and application protocols group. On
these groups the keys are unique by semantic (e.g. an
IP is unique). In case the same IP is seen multiple times
(e.g. the same IP on two different VLANs) the value
associated to that key holds the information (e.g.
<vlanA>.bytesSent, <vlanB>.bytesRcvd and so on).

• nProbe plugin-related groups. Each plugin that saves
data into the cache can do it both enriching the above
group (e.g. and host X sends a DNS request, the DNS
plugins increments the value of dns.queries attribute
belonging to host X), and creating specific hashes.

Please note that all plugins contribute to enrich the
cache by setting the information they learn from traffic
such as the operating system type and version (e.g., the
HTTP plugin can extract the information by parsing
the user-agent field).

Keys can be persistent or volatile. Persistent keys are never
flushed from the cloud unless explicitly requested by a probe.
These keys can for example be used to store mappings from
users to IP addresses. In contrast, volatile keys, which are used
for example to store traffic counters for a specific host are
automatically removed from the database if they are not
updated for a configurable amount of time.

C. Updates and Queries to the MicroCloud
Promptly updates are mandatory to enable real-time

monitoring. Therefore, each probe update knowledge databases
without waiting for the corresponding flow to be expired when
time sensitive information has to be made available. More in
detail each probe updates the MicroCloud when:

• A user identified using radius (dis)connects to the
network. The cloud is immediately updated when a
user is discovered. In contrast, when an user has to be
deleted the corresponding entries are only marked for
deferred deletion based on a timeout. In this way, flow
records still present in the flow cache can still be
matched with the user information.

• Depending on the probe configuration, when a flow
expires the probe can rely on the cloud to discover the
user associated with such a flow. In case of sequential
flows (e.g. multiple requests on the same HTTP 1.1
connection), the user is computed on the first flow and
cached until the end of the connection.

• A flow expires, to update the database entries including
flow peers, ports and protocols with the flow
information. For instance when a HTTP flow from host
X to Y expires, the probe updates the cloud counters
corresponding to host peers by incrementing the
corresponding bytes and packets.
As each probe can set multiple keys per each flow,
nProbe opens two communication channels with a
MicroCloud Node instance. The first channel is
synchronous and used to get information from the
cloud (e.g. read the user name associated to a given
IP), whereas the second is asynchronous and used to
set or delete data from the cloud. We decide to use two
distinct channels to accommodate for distinct
requirements: low latency and high throughput. The
synchronous channel is used by the probe to get replies
with low latency for the information that has to be
immediately received. In contrast, the asynchronous
channel is used to enqueue requests that do not need to
be performed in real-time. By grouping together
requests and by executing them in batches network
bandwidth can be saved.

Flow information that needs to be constantly updated for
each analyzed packet, such as the number of bytes, is never
stored in the MicroCloud nodes. In fact, even if the
communications with MicroCloud nodes are very efficient,

updating a node for each received packet is not practical as it
would cause significant network traffic and would increase the
load on the nodes. To make this information available sooner to
monitoring applications, we have implemented into nProbe a
subset of the Redis protocol. In this way, a network probe can
be queried by monitoring applications for accessing the
information stored within its flow cache using the same
interface that can be used to query MicroCloud nodes.

The separation between network probes and knowledge
database implemented by the proposed architecture offers new
interesting possibilities. Our architecture is in fact open, as it
allows third-party network monitoring applications to be easily
developed. Such applications can be coded using one of the
languages supported by the Redis client, including scripting
languages such as Perl and Python. In this way, highly modular
applications can implemented by software engineers without a
deep networking background. It is in fact possible to code
simple scripts solving very specific requirements such as
emitting alerts whenever a user has accessed specific URLs,
and creating time series of selected traffic metrics.

It is worth to remark that the MicroCloud does not have to
be perceived as a persistent database but rather as a distributed
and up-to-date cache constantly enriched by multiple agents.
We believe that the knowledge cache enables applications that
go beyond network monitoring.

IV. MICROCLOUD VALIDATION

The MicroCloud-based architecture is currently deployed in
a large production network to perform DNS traffic monitoring.
In particular, nProbe is at the core of a DNS traffic monitoring
system that analyzes the italian (.it) DNS registration service
since a couple of years. The .it ccTLD relies on seven DNS
nodes some of which using anycast addressing. Figure 2
depicts the architecture of a typical DNS monitoring node. In
our setting, a typical monitoring node handles more than 60
million queries per day with peaks of a few thousand queries/
sec. Inside the .it DNS network, the MicroCloud is currently
deployed on three national DNS nodes, and soon it will be
extended to the rest of the nodes.

Internet Users

.it

Log DNS Log Processor

DNS Traffic

DNS Traffic StatsTSDB

nProbe

Realtime 1 Hour Aggregation

n

Fig. 2. MicroCloud DNS Monitoring System for .it: Node Architecture

Before the deployment of our MicroCloud-based system,
DNS monitoring was performed by analyzing DNS flow traces
generated by nProbe in real-time [9]. As performing
aggregations is a computationally expensive task, aggregations

were only performed once a hour over hourly DNS traces. This
approach not only was unable to provide monitoring
information in real-time, but was also causing packet losses
during the analysis due to the high system load. Our
MicroCloud architecture has solved the problem. In fact,
thanks to the batch-based update system implemented into
nProbe, the updates to the MicroCloud node do not slow down
the processing of the DNS traffic. In addition, it is finally
possible to analyze the DNS traffic in near real-time, as the
latency between a DNS response received by the probe and the
Redis database updated is around one second. This is an
impressive achievement compared to the one hour delay we
had in our previous monitoring architecture.

Additionally, the MicroCloud architecture had enabled the
quick implementation of simple real-time monitoring
applications. For example, we can now monitor DNS queries
made by suspicious IP addresses that have been reported by
CENTR, the council of TLD domain registries, in real-time.

V. FINAL REMARKS

This paper has presented a novel architecture that enable
the implementation of real-time traffic correlation and
monitoring, as well distributed alerting. Each monitoring node
communicates with a small-sized cloud that acts as a
distributed consistent memory cache where monitoring
information is maintained. Traffic probes enrich the cloud by
storing into it information about hosts, protocols, and user-to-
IP mapping. The information is easily accessible for both
network probes and monitoring applications, which can be
implemented with little effort using scripting languages.
Although this paper focuses on traffic monitoring, the concept
of the microCloud has a broader scope as it can be applied
also to other areas of networking including management and
security.

REFERENCES

[1] B. Claise, “Cisco Systems NetFlow Services Export Version 9.”
RFC 3954 (Informational), Oct. 2004.

[2] [2] B. Claise, “Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of IP Traffic Flow
Information.” RFC 5101 (Proposed Standard), Jan. 2008.

[3] L. Deri, “nProbe: an Open Source NetFlow probe for Gigabit
Networks,” in In Proc. of Terena TNC 2003, 2003.

[4] P. Lucente, “pmacct: steps forward interface counters,” tech.
rep., 2008.

[5] ntop.org, “Benchmarking PF_RING DNA” http://www.ntop.org/
pfring/benchmarking-pfring-dna/, 2012.

[6] L. Rizzo, “Netmap: a novel framework for fast packet I/O,” in
Proc. of the 2012 USENIX Annual Technical Conference, 2012.

[7] Intel, “Data Plane Packet Processing on Embedded Intel
Architecture Platforms.” http://download.intel.com/design/
intarch/papers/322516.pdf, 2009.

[8] M. Becchi, M. A. Franklin, and P. Crowley, “A workload for
evaluating deep packet inspection architectures,” in 4th
International Symposium on Workload Characterization (IISWC
2008), pp. 79–89, 2008.

[9] L. Deri, L. L. Trombacchi, M. Martinelli, and D. Vannozzi, “A
dis- tributed dns traffic monitoring system,” in Proc. of th 8th
Int. Conference of Wireless Communications and Mobile
Computing, pp. 30–35, 2012.

