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Abstract— Monitoring of  large distributed networks requires 
the deployment of several probes at different network locations 
where traffic to be analyzed is flowing. Each probe analyzes the 
traffic and sends the monitoring data  toward a centralized 
management station. This semi-centralized architecture based on 
the push model is extensively adopted to analyze large 
distributed networks. However, this architecture presents serious 
limitations when used to provide real-time traffic monitoring and 
correlation capabilities across all probes.

This  paper describes a novel  architecture that addresses the 
problem of  real-time traffic correlation and alerting, by 
exploiting modern cloud infrastructures. In particular, we 
propose the adoption of a small-sized cloud to provide a 
consistent data space that is: i) shared among distinct probes to 
selectively store monitoring data, and, ii) accessible by external 
applications to retrieve selected information. We validate our 
architecture on large distributed networks in the context of  DNS 
traffic monitoring.

Index Terms—Distributed traffic monitoring, cloud computing. 

I. INTRODUCTION

NetFlow [1] and IPFIX are the de-facto standard 
technologies used to monitor network traffic in a passive 
manner. In the context of network flow monitoring, a flow [2] 
is defined as a set of IP packets passing through an observation 
point during a certain time interval, sharing common properties 
including, but not limited to,  ingress/egress interface, protocol, 
source/destination IP addresses and ports.  Flows have a 
specified lifetime that begins when the first flow packet is 
received at the observation point, and ends due to timeout or 
maximum duration. A flow-enabled network probe is deployed 
in a vantage point to aggregate packets into flows and to 
produce flow records, which carry statistics about each 
analyzed network flow. Flow records corresponding to expired 
network flows are exported by the probe toward a flow 
collector using a standardized flow export protocol such as 
NetFlow or IPFIX. The flow export protocol defines the flow-
record encoding format as well as the transport protocol (e.g., 
UDP or SCTP). The flow collector is an application executed 
on a centralized management station that filters,  aggregates and 
eventually dumps the received flow-records in a persistent 
database. The standard flow-monitoring paradigm is based on a 
strict push model. The collector passively listens for flow 
records originated by one or more probes and processes them 
without any interaction with the sources. Each network probe 
is totally independent from the rest of the network monitoring 
infrastructure.

Existing network infrastructures come with built-in flow- 
monitoring functionalities. In fact, network devices such as 
switches and routers commercialized by major industry players 
come with embedded network probes providing some form of 

flow-based monitoring capabilities. These embedded 
implementations, which usually provide limited performance 
and analysis capabilities, have made flow-monitoring the de-
facto monitoring paradigm.

Standalone software-based network probes [3], [4] have 
been introduced to overcome the limitations of embedded 
probes. They are more flexible and easier to extend than 
embedded probes and can be easily deployed on standard 
servers that receive a copy of the network traffic to be analyzed 
through traffic mirroring ports or network tap devices. In 
practice, software-based probes have drastically changed the 
way of monitoring network using a passive approach. In fact, 
software-based probes have extended the concept of flow 
record, which is usually limited to packet header fields onto 
embedded implementations, to the application domain making 
possible to analyze networking services, such as DNS, VoIP 
and the web from the application layer point of view. This 
means that software-based probes have allowed moving the 
network monitoring task from network-centric to a service and 
user-centric task.

By broadening the scope of flow monitoring to applications 
and services, software-probes have made the limitations of the 
push paradigm more pronounced. The main problem of a strict 
push model in the context of flow-monitoring is that i) the 
centralized management station can only have a deferred view 
of the network,  because the probes autonomously decide when 
to emit flow-records, and, ii) network probes analyze the traffic 
independently from each other without having the possibility to 
share information. These limitations prevents timely 
correlations between network flows originated from distinct 
network probes and belonging to a single application-layer 
session to be performed (e.g., correlate signaling and audio 
traffic in a VoIP session).

In this paper, we highlight the severe limitations that a strict 
push-model introduces in the context of service oriented 
network monitoring in large and high-speed networks and we 
describe practical network monitoring use-cases where the 
model manifest its limitations. Then, we describe a distributed 
network monitoring architecture that overcomes these 
limitations by augmenting the push-model with an publish-
subscribe mechanism. Our architecture is, in fact, based on a 
distributed knowledge databased that i) is accessible by every 
network probe and network collector, and, ii) keeps timely 
sensitive information for a configurable amount of time. The 
knowledge database, implemented using modern key-value 
stores, can be eventually distributed across network nodes to 
make the system both scalable and resilient.



II. BACKGROUND AND MOTIVATION

Flow correlation is the process of clustering semantically  
related flow records. For example,  correlation is required to 
associate flow-records corresponding to the two traffic 
directions (i.e., IP source-to-destination and destination-to-
source) that are often analyzed by distinct network-probes due 
to asymmetric IP routing, MPLS, layer 2/3 VPNs, or traffic 
balancers. In a flow-monitoring architecture based on standard 
NetFlow/IPFIX technologies, flow correlations can only be 
performed by the collector and are usually implemented as 
queries over the database back-end storing the entire flow- 
record stream. This way of performing correlations presents 
two main shortcomings: i) the storage backend is constantly 
taxed with periodic queries, and, ii) the correlations can only 
be computed when the flow-records are received by the 
collector making the architecture unsuitable for real-time 
monitoring.

Software-based probes running of commodity hardware 
have replaced embedded network probes primarily because 
they provide the flexibility and extensibility required to 
analyze modern network traffic flowing on 10 Gbit links using 
a service and user-centric monitoring approach. In fact, thanks 
to recent academic and industrial research [5], [6], [7] they are 
able to process packets at line-rate in 10 Gbit links and even to 
perform traffic analyses up to the application protocol by 
means of Deep Packet Inspection (DPI) [8]. Additionally and 
in contrast with probes embedded into existing network 
devices, software-based probes provide the extensibility 
required to support emerging encapsulation protocols such as 
Generic Route Encapsulation (GRE), and Mobile IP. These 
encapsulations techniques have become widely used in 10 Gbit 
links as they are commonly used as backbone links to 
consolidate traffic originated by heterogeneous networks.

In summary, software based probes made current flow- 
monitoring architecture more flexible, capable of supporting a 
large number of encapsulation protocols and of performing 
complex application level traffic analyses. However, the 
replacement of embedded probes with standalone probes do 
not enable real-time analysis and low latency correlations, 
which are extremely important especially when analyzing 
networked services from the application protocol point of view. 
Flow-correlation is required,  for example, in the context of 
Voice over IP (VoIP) traffic analysis, where flows-records 
corresponding the signaling traffic have to be correlated with 
the corresponding media flows to associate call quality with 
VoIP peers. Similar correlation is desirable on networks where 
users are identified using protocols such as Radius (RFC 
2865), so that flows can be automatically associated with users 
that authenticated to the network. DNS and SNMP flow 
analysis also requires the probe to handle the sub-flow 
identifier such as DNS transaction identifiers and SNMP 
request identifiers.

In this work we propose a novel architecture that unlike the 
standard flow-monitoring architecture can enable low-latency 
aggregations and real-time monitoring. At the core of our 
architecture there is a distributed knowledge-database called 
MicroCloud that contains updated network monitoring 
information. Our architecture is based on a collaborative 
model: each probe enrich the database with up-to-date 
monitoring information that is quickly available to the other 

architecture components to correlate flows together and to 
associate traffic with the originating user. This architecture 
overcomes a limitation of many monitoring tools that are IP/
MAC address centric instead of user-centric: users think in 
terms of services and identities, whereas IP and MAC 
addresses are intermediate low-level information used by 
computer to communicate.

III. MICROCLOUD MONITORING ARCHITECTURE

Our MicroCloud-based network monitoring architecture is 
depicted in Figure 1. It is composed by network probes based 
on nProbe [3], an open-source NetFlow/IPFIX probe written 
by the authors and by a MicroCloud consisting of one or more 
nodes. Each MicroCloud node, which is part of a distributed 
knowledge database, runs an instance of a key-value store. 
Network probes can emit flow records related to the analyzed 
traffic toward a centralized management station or update the 
knowledge database by setting keys in the cloud nodes. 
Monitoring applications can access the monitoring information 
available both in probes and cloud nodes using an unified 
interface,  which allows to subscribe to specific events or to 
retrieve information using a polling mechanism.
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Fig. 1. MicroCloud Architecture

A. The network probes
The core of the monitoring infrastructure is based on 

nProbe, which is an advanced network probe capable of 
analyzing traffic, classifying it into flows, and emitting the 
corresponding flow-records according to the user-specified 
template, i.e. nProbe supports flexible NetFlow in the Cisco 
parlance. nProbe leverages a Deep Packet Inspection (DPI) 
library named nDPI (http://www.ntop.org/products/ndpi/) to 
recognize more than 140 application layer protocols including 
Skype, BitTorrent, WebEx, Twitter and Facebook. Additionally, 
we have made nProbe capable of dissecting traffic 



encapsulated in commonly used encapsulation protocols. 
nProbe is extensible by means of plugins. Nowadays, nProbe 
comes with plugins for analyzing email traffic (SMTP, IMAP, 
and POP3), database traffic (MySQL and Oracle) and HTTP 
traffic. Plugins extract from network flows application-specific 
metadata such as URL and return code in the case of the HTTP 
plugin, with the purpose of providing a rich monitoring 
experience. For example, nProbe can report the request service 
time, i.e. the application delay and network latency for each 
URL so that network administrators do not have aggregate 
performance values, but rather fine-grained information 
extremely useful to pinpoint specific performance issues.

However, by using a standardized monitoring architecture 
based on NetFlow/IPFIX, the rich set of traffic monitoring 
information that nProbe can derive by dissecting live traffic 
can only be visible to network administrator when flow records 
expires.  For example, in the context of HTTP traffic 
monitoring, an URL would be available only when the 
corresponding network connection is terminated,  or when a 
maximum timeout has elapsed.

B. MicroCloud Nodes
MicroCloud nodes are database nodes where network 

probes can store time sensitive monitoring information for a 
configurable amount of time. MicroCloud nodes have to 
sustain high insertion rates and yet provide low response times 
when queried from monitoring applications. Modern databases 
implementing the key-value store paradigm represent a good 
option to achieve the goal as they are known to provide higher 
insertion rates than commonly used relational databases trading 
query expressivity for performance.  Data stored in the cloud is 
uniquely identified by a key. Network probes update the 
knowledge database by inserting key-value pairs. After 
evaluating possible key-value store alternatives we decided to 
built our architecture on top of the key-value store called Redis 
(http://www.redis.io) for the following reasons: i) it provide 
persistence, so that data is preserved across restarts as on 
standard databases,  ii) it natively supports the publish/
subscribe paradigm, so that cloud participants can subscribe to 
have information about relevant monitoring events, iii) it can 
be accessed with many languages and uses a simple client-
server protocol. Monitoring applications can access the this 
information by querying for specific keys. In Redis, the list of 
available keys can be retrieved using patterns. For example,  the 
command KEYS ip.192.168.* can be used to retrieve a list of 
keys starting with the specified prefix. To exploit this 
functionality we organize the information hierarchically (i.e., 
as multiple trees). Within each MicroCloud node there are 
many distinct groups (or trees):

• MAC, IP, VLAN and application protocols group. On 
these groups the keys are unique by semantic (e.g. an 
IP is unique). In case the same IP is seen multiple times 
(e.g. the same IP on two different VLANs) the value 
associated to that key holds the information (e.g. 
<vlanA>.bytesSent, <vlanB>.bytesRcvd and so on). 

• nProbe plugin-related groups. Each plugin that saves 
data into the cache can do it both enriching the above 
group (e.g. and host X sends a DNS request,  the DNS 
plugins increments the value of dns.queries attribute 
belonging to host X), and creating specific hashes. 

Please note that all plugins contribute to enrich the 
cache by setting the information they learn from traffic 
such as the operating system type and version (e.g., the 
HTTP plugin can extract the information by parsing 
the user-agent field).

Keys can be persistent or volatile. Persistent keys are never 
flushed from the cloud unless explicitly requested by a probe. 
These keys can for example be used to store mappings from 
users to IP addresses. In contrast, volatile keys, which are used 
for example to store traffic counters for a specific host are 
automatically removed from the database if they are not 
updated for a configurable amount of time.

C. Updates and Queries to the MicroCloud
Promptly updates are mandatory to enable real-time 

monitoring. Therefore, each probe update knowledge databases 
without waiting for the corresponding flow to be expired when 
time sensitive information has to be made available. More in 
detail each probe updates the MicroCloud when:

• A user identified using radius (dis)connects to the 
network. The cloud is immediately updated when a 
user is discovered. In contrast, when an user has to be 
deleted the corresponding entries are only marked for 
deferred deletion based on a timeout. In this way, flow 
records still present in the flow cache can still be 
matched with the user information. 

• Depending on the probe configuration, when a flow 
expires the probe can rely on the cloud to discover the 
user associated with such a flow. In case of sequential 
flows (e.g. multiple requests on the same HTTP 1.1 
connection), the user is computed on the first flow and 
cached until the end of the connection. 

• A flow expires, to update the database entries including 
flow peers, ports and protocols with the flow 
information. For instance when a HTTP flow from host 
X to Y expires, the probe updates the cloud counters 
corresponding to host peers by incrementing the 
corresponding bytes and packets. 
As each probe can set multiple keys per each flow, 
nProbe opens two communication channels with a 
MicroCloud Node instance. The first channel is 
synchronous and used to get information from the 
cloud (e.g. read the user name associated to a given 
IP), whereas the second is asynchronous and used to 
set or delete data from the cloud. We decide to use two 
distinct channels to accommodate for distinct 
requirements: low latency and high throughput. The 
synchronous channel is used by the probe to get replies 
with low latency for the  information that has to be 
immediately received. In contrast, the asynchronous 
channel is used to enqueue requests that do not need to 
be performed in real-time. By grouping together 
requests and by executing them in batches network 
bandwidth can be saved.

Flow information that needs to be constantly updated for 
each analyzed packet, such as the number of bytes, is never 
stored in the MicroCloud nodes. In fact, even if the 
communications with MicroCloud nodes are very efficient, 



updating a node for each received packet is not practical as it 
would cause significant network traffic and would increase the 
load on the nodes.  To make this information available sooner to 
monitoring applications, we have implemented into nProbe a 
subset of the Redis protocol. In this way, a network probe can 
be queried by monitoring applications for accessing the 
information stored within its flow cache using the same 
interface that can be used to query MicroCloud nodes.

The separation between network probes and knowledge 
database implemented by the proposed architecture offers new 
interesting possibilities.  Our architecture is in fact open, as it 
allows third-party network monitoring applications to be easily 
developed. Such applications can be coded using one of the 
languages supported by the Redis client, including scripting 
languages such as Perl and Python. In this way, highly modular 
applications can implemented by software engineers without a 
deep networking background. It is in fact possible to code 
simple scripts solving very specific requirements such as 
emitting alerts whenever a user has accessed specific URLs, 
and creating time series of selected traffic metrics.

It is worth to remark that the MicroCloud does not have to 
be perceived as a persistent database but rather as a distributed 
and up-to-date cache constantly enriched by multiple agents. 
We believe that the knowledge cache enables applications that 
go beyond network monitoring.

IV. MICROCLOUD VALIDATION

The MicroCloud-based architecture is currently deployed in 
a large production network to perform DNS traffic monitoring. 
In particular,  nProbe is at the core of a DNS traffic monitoring 
system that analyzes the italian (.it) DNS registration service 
since a couple of years. The .it ccTLD relies on seven DNS 
nodes some of which using anycast addressing. Figure 2 
depicts the architecture of a typical DNS monitoring node. In 
our setting, a typical monitoring node handles more than 60 
million queries per day with peaks of a few thousand queries/
sec.  Inside the .it DNS network, the MicroCloud is currently 
deployed on three national DNS nodes, and soon it will be 
extended to the rest of the nodes.

Internet Users
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Fig. 2. MicroCloud DNS Monitoring System for .it: Node Architecture

Before the deployment of our MicroCloud-based system, 
DNS monitoring was performed by analyzing DNS flow traces 
generated by nProbe in real-time [9]. As performing 
aggregations is a computationally expensive task, aggregations 

were only performed once a hour over hourly DNS traces. This 
approach not only was unable to provide monitoring 
information in real-time, but was also causing packet losses 
during the analysis due to the high system load. Our 
MicroCloud architecture has solved the problem. In fact, 
thanks to the batch-based update system implemented into 
nProbe, the updates to the MicroCloud node do not slow down 
the processing of the DNS traffic. In addition, it is finally 
possible to analyze the DNS traffic in near real-time, as the 
latency between a DNS response received by the probe and the 
Redis database updated is around one second. This is an 
impressive achievement compared to the one hour delay we 
had in our previous monitoring architecture.

Additionally, the MicroCloud architecture had enabled the 
quick implementation of simple real-time monitoring 
applications. For example, we can now monitor DNS queries 
made by suspicious IP addresses that have been reported by 
CENTR, the council of TLD domain registries, in real-time.

V. FINAL REMARKS

This paper has presented a novel architecture that enable 
the implementation of real-time traffic correlation and 
monitoring, as well distributed alerting. Each monitoring node 
communicates with a small-sized cloud that acts as a 
distributed consistent memory cache where monitoring 
information is maintained. Traffic probes enrich the cloud by 
storing into it information about hosts,  protocols,  and user-to-
IP mapping. The information is easily accessible for both 
network probes and monitoring applications, which can be 
implemented with little effort using scripting languages. 
Although this paper focuses on traffic monitoring, the concept 
of the microCloud has a broader scope as it can be applied 
also to other areas of networking including management and 
security.
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