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Abstract

Neural systems offer high predictive accuracy but
are plagued by long training times and low inter-
pretability. We present a simple neural architecture
for recommender systems that lifts several of these
shortcomings. Firstly, the approach has a high pre-
dictive power that is comparable to state-of-the-art
recommender approaches. Secondly, owing to its
simplicity, the trained model can be interpreted eas-
ily because it provides the individual contribution
of each input feature to the decision. Our method
is three orders of magnitude faster than general-
purpose explanatory approaches, such as LIME. Fi-
nally, thanks to its design, our architecture addresses
cold-start issues, and therefore the model does not
require retraining in the presence of new users.

See a demo video here.

1 Introduction
Recommender systems are a branch of machine learning with
the goal of predicting preferred future actions for users, based
on their historical preferences and individual traits (e.g. age,
gender, location). E-commerce is one area that has been trans-
formed by recommender systems, which provide a solution
to the information deluge problem: users are presented only
with a list of likely future actions (items to purchase, videos
to view, etc.), ranked by estimated interest to the user. Today,
recommender systems and machine learning are penetrating
and transforming many fields, including business [Heckel et
al., 2017], finance [Yu et al., 2008], medicine/biology [Neves
and Leser, 2015], and law [Surden, 2014]. In many of these
disciplines, it is essential not only to have accurate predictions
but also to provide a rationale behind the decision that can be
made transparent to the end-user [Lipton, 2016]. Therefore,
it is becoming increasingly important to deliver systems that
provide both accuracy and interpretability.
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Recently, deep-learning architectures have been adapted
to the context of recommender systems. These architectures
exhibit improvements in predictive accuracy compared with
existing state-of-the-art methodologies based on matrix factor-
ization, particularly in the case of cold-start problems. How-
ever, deep learning still falls short in terms of interpretability,
and it is quite challenging to rationalize why the recommenda-
tion process elected a particular action.

We will address this limitation and propose a neural ar-
chitecture tailored specifically to recommender systems that
can retrace the contribution of the original features leading
to a given decision. We achieve this by building on notions
from relevance propagation methodologies, which have been
successful in the domain of image data [Bach et al., 2015].
Contributions of this work include:

1. We propose a simple neural-network architecture to en-
code user-item interactions and user or item features. The
architecture departs from the traditional inner product cal-
culation, given the learned user and item embeddings. To
accommodate for the inherent data sparsity in recommenda-
tion settings and to allow the network to generalize better
under cold-start conditions [Vartak et al., 2017], we introduce
a perturbation mechanism in the training process.

2. Owing to the simple topology, it is also possible to
understand fully the individual contributions of the original
input attributes for the network’s decisions. We achieve this
by adapting on ideas of relevance propagation, which propa-
gate backwards the relevance of the network function output
through the network. To the best of our knowledge, this is the
first effort of its kind in the field of recommender systems.

3. Our experiments show that: (a) The accuracy of the
technique is comparable to existing state-of-the-art approaches.
(b) Cold-start situations are well addressed. (c) We evaluate
the pertinence of the features returned by our methodology by
means of significance testing and show their high relevance
to the decision made. (d) RecoNet offers equivalent or better
interpretability than surrogate methodology approaches such
as LIME [Ribeiro et al., 2016], but at a fraction of the cost.

2 Our Recommender Setting
Let us assume a set of n users U = {u1, . . . , un} and a set
of m items V = {v1, . . . , vm}. For each user u, we have

https://youtu.be/mfY6ET9a8HA


collected her preference Ruv for an item v. In our setting, we
assume that the preference is inferred from an implicit interac-
tion or feedback (e.g. product purchase, view of a movie, like
of an item page), which makes the n ×m matrix R binary.
The problem of generating recommendations based on implicit
feedback is known as one-class collaborative filtering (OCCF).
We denote the user history by V (u) = {v ∈ V |Ruv 6= 0}, i.e.
the subset of items with which user u interacted.

Let us also assume that content information is available to
users and items. User features such as gender, age, location,
etc. are usually known, whereas for items, one might have
textual information such as reviews, or categorical information
such as genres, numerical characteristics or images. We as-
sume that, although we might have users or items with zero in-
teractions (cold-start problem), we have a complete user/item
profile. We denote by ΦU and ΦV the sets of user and item
features, respectively. The features of a specific user u ∈ U
are denoted by the set ΦU (u) = {φu,1, . . . , φu,k}, where
φu,i ∈ ΦU , i = 1, . . . , k. We define the set of item features
ΦV (v) for a specific item v ∈ V in a similar way. We assume
that a user u can be adequately represented by all the infor-
mation we have collected about her. Thus, the user’s features
ΦU (u), interactions V (u), and the features of the items with
which the user has interacted ΦV (V (u)) =

⋃
v∈V (u)

ΦV (v)

will be the input for our model. There is no overlap between
items and user or their respective features, ie., the feature sets
ΦV and ΦU as well as the item set V are pairwise disjoint.

3 Related Work
Much of the work on recommender systems in the past decade
has focused on matrix factorization (MF) approaches [Ko-
ren et al., 2009]. MF techniques operate by describing users
and items in a latent dimensionality and modelling the in-
teractions between users and items through an inner-product
computation. MF can predict ratings or preferences well,
but the latent feature space makes it difficult to explain rec-
ommendations. Recently, deep neural network (DNN) ar-
chitectures have also been applied in the area of recom-
mender systems. Several variants of DNNs have been pre-
sented previously [He and Chua, 2017; He et al., 2017;
Cheng et al., 2016; Shan et al., 2016; X. Wang and Chua, 2017;
Zhang et al., 2016]. In these works, we can distinguish two
main paths of modeling the structure of the DNN. One path
follows ideas built on embeddings, combining the resulting
features with deeper pooling or stacking of the resulting neu-
ral layers, and the classification is typically accomplished
using some variant of a logistic regression or nearest-neighbor
search. The second path follows a core idea very similar to
matrix factorization and tries to model the interaction between
users and items using an inner-product calculation. The dif-
ference to MF approaches is that the neural network learns
the new latent space of users and items. However, none of
the works in recommender systems based on neural networks
explicitly address the topic of interpretability. In contrast, our
work describes a neural recommender system designed from
the ground up to provide interpretable results.

Our network architecture shares commonalities with word-

embedding approaches such as word2vec [Mikolov et al.,
2013a] and other shallow networks for classification tasks
(FastText [Bojanowski et al., 2017] and StarSpace [Wu et
al., 2017]). A significant difference is that our work not only
predicts a class given a set of features, but also highlights and—
more importantly—ranks the set of features (i.e. items and
attributes) that contributed most to the classification output.

Relevance propagation (or attribution) methods have been
proposed and, so far, applied predominantly in the context of
images to understand the contribution of each input feature in
a deep neural network to the classification output. Attribution
methods include approaches such as salience maps [Simonyan
et al., 2013; Baehrens et al., 2010], layerwise relevance propa-
gation (LRP) [Bach et al., 2015] and DeepLIFT [Shrikumar et
al., 2017]. We review how such approaches operate. Let us
consider a network with input x = [x1, . . . , xn], which pro-
duces an output of f(x) = [f1(x), . . . , fC(x)], where C is the
number of output neurons. Given a target neuron c ∈ C , the
purpose is to determine the relevance R = [R1, . . . , Rn] of
each input feature xk to the output fc. Salience maps decom-
pose the gradient-squared norm of the output function as a sum
of relevances of the input features, i.e.

∑
iRi = ||∇f(x)||,

helping to measure how much the changes in each pixel con-
tribute to the prediction. LRP decomposes the classification
decision into pixel-wise relevances, i.e.

∑
iRi = f(x), thus

indicating the contributions of each pixel to the overall classi-
fication score. LRP operates using a layer-wise conservation
principle, forcing the total sum of relevances to be preserved
between neurons of two consecutive layers. Finally, DeepLIFT
operates in a backward fashion similar to LRP, decomposing
the output prediction of a neural network for a particular input
by back-propagating the contributions of all neurons in the net-
work to each input feature. An effort to provide a unified view
of the proposed relevance propagation methods has appeared
in [Ancona et al., 2017].

Unlike attribution methods, surrogate model approaches can
be applied to any pre-existing model, i.e., the original model
is treated as a black-box. We compare our approach with
LIME [Ribeiro et al., 2016], a well-established and widely
used surrogate technique, in Section 5.5.

4 Our Approach
The main objective of our research is to engineer a recom-
mender system that not only delivers high-quality recommen-
dations, but is also capable of identifying the individual items
or additional attributes that contributed to the recommenda-
tion. Therefore, our goal is to move beyond existing MF-based
approaches, which are not able to rank individual items and
features by importance, and beyond current deep-learning rec-
ommenders, which are difficult to explain and require black-
box explanatory tools to generate the explanations.

One of the main challenges to explainability that affects
existing deep-learning recommenders comes from the fact that
users, items and attributes are not treated homogeneously. For
example, embedding-based approaches project each user and
attribute into a different space. In our work, users are identified
by a set of items and attributes (i.e. each user can be identified
by a bitmap), and the user representation is computed by



averaging embedding vectors corresponding to each one of
the items and attributes associated to that user.

Items and attributes are projected in the same embedding
space. Specifically, each user is identified by a subset of dense
vectors belonging to a space (an embedding layer) of size
d × (|V | + |ΦU | + |ΦV |), where d is a hyper-parameter of
the model. Given a sparse input for a specific user consist-
ing of a set of items, item attributes and user attributes, the
recommendation is implemented as a classification task asso-
ciated to a user. So each user is represented as a d-dimensional
element-wise average of its corresponding vectors (user fea-
tures, items purchased and item features). This vector is then
mapped to the |V | items in which the user might be inter-
ested. It is worth noting that this approach eliminates one of
the main shortcomings of traditional collaborative filtering
approaches, which do not generalize to new users and may
require extensions to consider a blending of collaborative and
content-based methodologies. In our topology, this task is
addressed seamlessly.

Figure 1: Overview of the RecoNet architecture.

Figure 2: Understanding the importance of each input feature.

4.1 The RecoNet Model Architecture
Our model, called RecoNet, comprises a simple network
topology that attempts to balance predictive power with inter-
pretability. We use simple network blocks so that it is feasible
to traverse the network backwards and identify the features
that contributed to the decision.

For a given user u ∈ U , the feature set FSu = V (u) ∪
ΦU (u)∪ΦV (V (u)) denotes the user’s profile, which consists
of the union of the user’s interactions with the user and item
attributes. Let Iu ∈ {0, 1}m be the corresponding binary

vector of the FSu, where m = |V | + |ΦU | + |ΦV |. If Q ∈
Rd×m is a latent factor matrix with rows qi, i ∈ [1, . . . , d],
then each user can be represented by the average vector of all
latent vectors in her feature set, that is

xu :=
Q · ITu
|FSu|

.

The latent vectors for each feature in FSu, used for averaging,
are illustrated in Figure 1. The representation xu of a user
forms the input of the NN. The NN input is then passed to a
fully connected network with |V | units, which produces the
final recommendation probabilities with the help of a softmax
function:

p̂ = softmax(ŷ) = softmax(WxT ),

where W is a |V | × d weight matrix. We use the categori-
cal cross-entropy loss. The weights are initialized using the
Xavier initialization [Glorot and Bengio, 2010]. Our architec-
ture is inspired by the CBOW architecture for word embed-
dings [Mikolov et al., 2013b].

An obvious generalization of the model described here
would be to add one or more hidden layers between the input
layer and the final classes. In that case, ŷ = f(x) where f rep-
resents the new model for the classification decision. For the
datasets evaluated in our experiment, such a RecoNet model
did not produce better results (see Table 1).

4.2 Training
In our topology, items and features are projected in an unified
embedding layer, whose parameters are learned during the
training process. Learning high-quality representations for
items and features is key to providing high-quality recommen-
dations. Our approach uses the complete purchase/preference
history of users to generate training examples that capture
the interactions of users with items. The method we fol-
low to achieve this objective is to concatenate the entire pur-
chase/preference history of the user and then randomly “re-
move” one item and place it as the label of the training exam-
ple, keeping the rest of the user’s history intact.

Figure 3: Generating training examples.

To introduce further variability, we also remove more than
one item. However, such variations are generated with a pro-
gressively lower chance to avoid the risk of deviating too far
from the distribution of the training data. Given that r items
have already been removed, an additional item is removed with
probability 1

(r+1)β
, where the rank is r = 0 for the first item



removed, r = 1 for the second item removed, etc. A proper
value for β for our experiments was determined via cross-
validation. Therefore, one item is always removed and placed
as the label to be predicted, and additional items are removed
with diminishing probability. This process is not confined to
the users’ preference history, but is also applied to the user
and item attributes, allowing the model to generalize better.
The above process can be considered a form of dropout, but is
applied only to the input layer of the DNN. We illustrate the
sampling process in Figure 3. The intuition of our sampling
approach is that it generates variability, but the distributions
for the training and test data are not that different. Only a few
training samples with many items removed will ever appear
during the training phase, because the probability of an item of
rank r being removed is 1

(
∏r
i=0(i+1))β

= 1
((r+1)!)β

≈ 1
rrβ

(us-
ing Stirling’s approximation), which declines rapidly with r.
The more commonly used uniform sampling, which removes
r out of n items with a probability of r/n, is more likely to
lead to training samples that promote associations between
unrelated items.

4.3 Predictions and Interpretations
We are interested not only in recommending items, but also in
ranking the input features that yield a particular recommenda-
tion. Our approach therefore requires two steps: (i) a forward
step on the network to perform the actual inference, and, (ii) a
backward step, which, given the outcome of the network (i.e.,
the index corresponding to the maximum activation), assigns
a ranking score to each individual input feature to measure the
feature’s relevance to the target prediction.

The simplicity of the model guarantees efficient inferences.
In fact, the inference process consists of averaging the em-
bedding vector(s) corresponding to each input feature to a
d-dimensional vector x, followed by a matrix-vector multipli-
cation between the weight matrix W of size |V | × d of the
neural network and the input vector x to the neural network.

To understand which input features contributed to the clas-
sification outcome, we build upon the concept of layerwise
relevance propagation (LRP) [Bach et al., 2015]. The idea is to
distribute the network output activity fully and layer-by-layer
from the output layer onto the input features, losing neither
positive nor negative evidence. A positive relevance of an
input feature means that this feature supports the classification
decision, whereas negative relevance values signify that the
particular feature value inhibits (and possibly contradicts) the
prediction. One of the main benefits of the LRP methodology
is that the attribution process happens only at inference time
and does not incur computation at training time.

Assume Rk is the relevance of a neuron k for the predic-
tion f(x), and Rk←j is the contribution of a neuron j of the
previous layer to Rk. For our network architecture, back-
propagating the relevance involves three propagation steps.

1. Relevance from classification output to pooling: Al-
though there are many ways of implementing LRP (known
as propagation rules), we use ε-LRP when back-distributing
the prediction scores in the fully connected part of network.
Initially, we zero out all the prediction scores for the non-
target classes. This means that, if j is the target class, then

Ri =
∑|V |
k=1Ri←k = Ri←j for the relevances of the pooling

layer. The advantage of this approach is that it yields a unique
propagation and, therefore, a recommendation explanation for
each of the targeted items. In the simple case of a single, linear,
and fully connected layer as described in Fig. 1, the attribution
of the input xi to this class is Ri = Ri←j = wjixi.

Of course, as described in Section 4.1, one might want
to add more layers between the pooling layer and the fully
connected layer. In that case,

Ri =
∑
j

zji∑
i′(zji′ + bj) + ε · sign(

∑
i′(zji′ + bj)

Rj

where zji = w
(l+1,l)
ji x

(l)
i is the weighted pre-activation of a

neuron i of layer l to the neuron j of the next layer l + 1, and
bj is the additive bias of unit j.

2. Relevance from pooling to latent factors: For this part
of the network, we use a proportional redistribution of the
d-relevances R1, . . . , Rd from the pooling layer to the latent
factors of the feature set FSu (horizontal distribution of Fig-
ure 2). This means that each element qi,k, i = 1, . . . , d of a
latent vector of each original feature φk, will have a relevance
of

Zi,k =
qi,k∑m

p=1 qi,pIu(p)
Ri

3. Finally, to propagate the relevance from the latent factors
to the original features, one has to compute the relevance of
each original feature φk, Zφk , by adding the relevances of all
the dimensions of the corresponding latent factor (vertical
summation of Figure 2), i.e.,

Zφk =

d∑
i=1

Zi,k

5 Experiments
We evaluate two aspects of RecoNet: (a) its predictive power
as a recommender system and (b) the validity and quality of
the explanations given. We focus our experiments on the im-
plicit recommendation setting because it is the most prevalent
(and most difficult) setting. Implicit or one-class problems
come with binary ratings, where a value of 1 denotes that
the user bought/liked/viewed an item, and 0 denotes an un-
known. We use two datasets for our experiments: a propri-
etary implicit dataset from our institution containing 550,000
purchases (130,000 users and 500 items), called B2B. The
publicly available MovieLens dataset with 1 million ratings
(approx. 6,000 users and 4,000 movies). MovieLens contains
ratings from 1 to 5. We convert it to a one-class collaborative
filtering problem by converting ratings above or equal to 3
into 1 (positive interaction) and ratings lower than 3 into 0
(unknown interaction so far).

5.1 Predictive Power
We split the data using a 60–20–20 split for training, develop-
ing and testing, respectively. To be fair to each technique, we
performed an extensive grid search to determine good hyper-
parameters, and we report the best results achieved by each
technique. We allocated at least two days of computational

http://grouplens.org/datasets/movielens/1m/


Interpretable MovieLens (w/o attr) MovieLens (w attr) B2B (w/o attr) B2B (w attr)

FM no 0.3130 0.3177 0.8188 0.8267
OCuLaR partially 0.3763 0.3771 0.8349 0.8592

item-2-item partially 0.2960 - 0.7408 -
user-2-user partially 0.2657 - 0.8071 -

CML no 0.3281 0.3060 0.7489 0.8269
RecoNet yes 0.3294 0.3508 0.8317 0.8589

RecoNet + Layer yes 0.3248 0.3186 0.8143 0.8393

Table 1: Comparison of recall@50 across various techniques. The two highest-performing algorithms are highlighted in boldface

time per technique for hyper-parameter searching. To evalu-
ate performance, we adopted the approach used in previous
works [He et al., 2017; Hsieh et al., 2017] by using recall-at-k
items as the evaluation metric. For our experiments we used a
k = 50 to evaluate the quality of the best recommendations.
For the cold-start experiment we report the recall@k for every
value of k. We compare the following techniques:

• User/item similarity: Traditional neighborhood-based
collaborative filtering techniques compute the similarity
between users or items and work well in practice. In
addition, they offer partial interpretability by pointing to
similar users (or items). We used the ItemSimilarityRec-
ommender of the Turicreate package and obtained the
best results using cosine similarity.

• Matrix factorization (MF): We use the Overlapping co-
Cluster Recommendation (OCuLaR) algorithm [Heckel
et al., 2017] as an instance of MF. It is a state-of-the-
art technique and has been shown to outperform both
wALS [Pan et al., 2008] and BPR [Rendle et al., 2009].
OCuLaR is a non-negative matrix factorization approach
that yields partially interpretable recommendations be-
cause its explicitly computed factors are able to model
user and item participation in the co-clusters, and are
interpretable in this manner. However, OCuLaR does not
rank the importance of features, which RecoNet does.

• Factorization machines: Similar to support vector ma-
chines (SVM), factorization machines (FM) are a general
predictor for real-valued feature vectors. Unlike SVMs,
FMs are also able to estimate reliable parameters under
very high sparsity as is usually the case in recommender
systems. They model all nested variable interactions,
but use factorized instead of fully parameterized interac-
tions [Rendle, 2010]. We used the pyFM, which applies
stochastic gradient descent with adaptive regularization.

• Collaborative metric learning (CML): CML is a deep-
learning technique that uses a joint metric space to encode
user–user and item–item similarities [Hsieh et al., 2017].

• RecoNet: For RecoNet we also experimented with a vari-
ant having an additional layer with ReLu after the pooling
layer, which did not yield better results than the simpler
RecoNet. Our interpretation of this is that there are no
strong nonlinear relationships in the particular setting
that would benefit from additional hidden layers.

The summary of results is shown in Table 1 for using and
not using the user/items attributes (i.e. using only the users’

preference history). RecoNet shows a performance compet-
itive with the best techniques for the datasets used, without
sacrificing interpretability—a feature that we highlight next.

5.2 Cold Start
We tested the performance of several techniques under cold-
start conditions, that is, when the test set contains users who
were not present in the training set. For the B2B dataset from
our institution using the time of purchase, we had a natural
presence of 35% of users in the test data without a user history
in the training data. For the MovieLens dataset, we had to
create cold-start situations artificially: 10% of users in the test
set were randomly denoted cold-start users, and their history
was removed from the training data. The results in Figure 4
show the recall@k (x-axis depicts the k from 1 to 50) and
RecoNet exhibits a recall that is comparable with OCuLaR
and substantially better than CML and FM.

Cold-Start MovieLens Cold-Start B2B

R
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RecoNet

FM

RecoNet

FMCML

OCuLaR OCuLaR
CML

Figure 4: Cold-start performance of RecoNet and other techniques.

5.3 Visual Explanations
We created a demo of RecoNet here for the MovieLens data.
The demo also uses speech recognition (“Why do you rec-
ommend this movie?") and speech synthesis (enunciating the
explanation) to simplify the interaction with the user. We
adapt a Sankey diagram to show the importance of the input
features for a recommendation. The right-hand side of the
diagram shows the item recommended. The left-hand side
depicts “flows” that capture the most relevant positive features.
The thickness of the flow corresponds to the relevance value
attributed to that feature. Figure 5 shows an example of this vi-
sualization. It lists the top six positive influences for a user that
was recommended to view the movie “Men in Black". Positive
endorsements for the recommendation are provided based on
gender and age, as well as previously watched movies in the
action and sci-fi genres.

https://github.com/apple/turicreate/
https://dataplatform.cloud.ibm.com/exchange/public/entry/view/b3a1cc40c42bfc4f269dff5b0cc2d261
https://github.com/coreylynch/pyFM
https://github.com/changun/CollMetric
https://youtu.be/mfY6ET9a8HA


Figure 5: Example of a movie recommendation. The top relevant
original features that contributed to this decision are highlighted.

5.4 Evaluating the Prediction
To evaluate the pertinence of the features highlighted by Re-
coNet, we perturb the input by removing the top k most rele-
vant features and measure the corresponding distortion in the
classification output. We measure for each k the effect of the
perturbation on the target activation, i.e. ∆ŷc = fc(x|xk =
0)− fc(x), where the former part indicates that the top k-th
features have been removed from input x. We compare the dis-
tribution of ∆ŷc when the top k removed features are selected
at random or using the ranking provided by RecoNet. Figure 6
shows the estimated mean difference of the activation of the
recommended item after perturbing the top 50 most relevant
attributes for both datasets. The gray band represents the 95%
confidence interval of the estimated mean. It is obvious that,
for both datasets, removing the most relevant features signifi-
cantly decreases the activation value of the targeted output.

MovieLens B2B

perturbation steps perturbation steps

Random

RecoNet
RecoNet

Random

Figure 6: The large drop suggests that removing the features deemed
important by RecoNet greatly affects the classification output.

Previous work followed equivalent methodologies [Ancona
et al., 2017; Bach et al., 2015] to quantify the validity of
the selected features. We provide a stronger result through a
formal test of statistical significance. Figure 7 compares the
distribution of ∆ŷc when perturbing a random input feature
(labeled “random 1”) and compares it with the distribution for
the case where we perturb the feature that was highlighted as
the most important (labeled “top 1”). The shape of the distri-
butions is different: the “top 1‘’ is negatively skewed, whereas
the “random 1” is more symmetric. We test the hypothesis
whether the samples come from the same distributions using
the Mann–Whitney U test. The p-value is less than 10−4 for
both datasets; the hypothesis cannot be accepted.

5.5 RecoNet vs LIME
LIME [Ribeiro et al., 2016] is a well-established surrogate
technique for interpreting the output of classifiers. LIME
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Figure 7: Comparison of the distributions of ∆ŷ for the top recom-
mendation in two cases: (a) when the most relevant feature (“top 1”)
is perturbed and (b) when a random feature (“random 1”) is modified.

explains a classification instance by building a surrogate ex-
plainable model that locally approximates the particular classi-
fication output. To have a strong baseline for our approach, we
implemented an alternate explanation engine built on LIME
(and RecoNet as its black-box model). In Figure 8 we repeat
the experiment shown in Figure 6, focusing only on RecoNet
and LIME. This figure highlights the very good agreement for
both techniques among the first four to five features ranked
most important. For the remaining features, RecoNet exhibits
a larger decrease than LIME in the classifier output when
these features are removed, suggesting that the features ranked
highest by RecoNet were indeed more important than those
discovered by LIME.

1. 'Pulp Fiction (1994)'
2. 'Usual Suspects, The (1995)'
3. 'Sixth Sense, The (1999)'
4. 'Few Good Men, A (1992)'
5. 'Full Monty, The (1997)'
6. 'zipcode - 55416'
7. 'Hoop Dreams (1994)'
8. 'Antz (1998)'
9. 'Cop Land (1997)'
10. ‘Attribute – Occupation’
11. 'Shawshank Redemption (1994)'
12. 'Game (1997)'

RecoNet: top features LIME: top features

1. 'Pulp Fiction (1994)'
2. 'Usual Suspects, The (1995)'
3. 'Sixth Sense, The (1999)'
4. 'Antz (1998)’
5. 'Full Monty, The (1997)’
6. 'Hoop Dreams (1994)’
7. 'Few Good Men, A (1992)’
8. 'zipcode - 55416'
9. 'Cop Land (1997)'
10. ‘Attribute – Occupation’
11. 'Strictly Ballroom (1992)'
12. 'gender – Male’

Example
Recommendation

Reasoning for Recommendationperturbation steps

MovieLens

LIME

RecoNet

Figure 8: Left: The greater decrease for RecoNet shows that the
features selected are more descriptive than those indicated by LIME.
Right: A good agreement of feature importance for LIME and Re-
coNet for a recommendation instance for the movie “Fargo”.

RecoNet has been designed from the ground up to provide
interpretable recommendations without substantially increas-
ing the inference latency. LIME, on the other hand, incurs
a large per-inference cost, and it can be impractical for use
in industrial and multi-user applications. In fact, for each ex-
planation, LIME probes several thousands of inferences on
the black-box model. For example, to generate the explana-
tions for each recommendation instance in our setup, LIME
required an average of 10–12 seconds. RecoNet required on
average 10 milliseconds to perform the inference and generate
the explanation; thus, it is more than 1000 times faster.

6 Conclusion
RecoNet is a neural recommender system that (a) exhibits
predictive power that is competitive with state-of-the-art rec-
ommendation approaches, (b) is explainable, (c) can address
cold-start situations. Our experiments suggest that the origi-
nal features highlighted as relevant are indeed pertinent and
statistically significant.
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